Skip to main content
Log in

Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Cumulative evidence suggests that moderate red wine consumption protects the cardiovascular system. The effect of cultured cells derived from red grape berry (RGC) on blood pressure (BP) has not been investigated. We therefore studied the antihypertensive effects of oral consumption of RGC in experimental rat model of metabolic-like syndrome and assessed its effect on human umbilical vein endothelial cells (HUVECs).

Methods

Forty male Sprague–Dawley rats were fed for 5 weeks with either a high fructose diet (HFD) (n = 10) or HFD supplemented, during the last 2 weeks, with different doses (200, 400 and 800 mg/kg/day) of RGC suspended in their food (n = 30). BP, plasma triglycerides, insulin and adiponectin levels were measured at the beginning and after 3 and 5 weeks of diet. RGC effect on vasodilatation was evaluated by its ability to affect endothelin-1 (ET-1) production and endothelial nitric oxide synthase (eNOS) expression in HUVECs.

Results

BP, plasma triglycerides, insulin and adiponectin increased significantly in rats fed with a HFD. The increase in BP, plasma triglycerides and insulin was attenuated by RGC supplementation. Incubation of HUVECs with RGC demonstrated a concentration-dependent inhibition of ET-1 secretion and increase in the level of eNOS, signaling a positive effect of RGC on vasodilatation.

Conclusion

In rats with metabolic-like syndrome, RGC decreased BP and improved metabolic parameters. These beneficial effects may be mediated by the cell constituents, highly rich with polyphenols and resveratrol, reside in their natural state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vidavalur R, Otani H, Singal PK, Maulik N (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11:217–225

    CAS  Google Scholar 

  2. Leifert WR, Abeywardena MY (2008) Cardioprotective actions of grape polyphenols. Nutr Res 28:729–737

    Article  CAS  Google Scholar 

  3. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    Article  CAS  Google Scholar 

  4. Schini-Kerth VB, Auger C, Kim JH, Etienne-Selloum N, Chataigneau T (2010) Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF. Pflugers Arch 459:853–862

    Article  CAS  Google Scholar 

  5. Corder R, Douthwaite JA, Lees DM, Khan NQ, Viseu Dos Santos AC, Wood EG, Carrier MJ (2001) Endothelin-1 synthesis reduced by red wine. Nature 414:863–864

    Article  CAS  Google Scholar 

  6. Madeira SV, Auger C, Anselm E, Chataigneau M, Chataigneau T, Soares de Moura R, Schini-Kerth VB (2009) eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 46:406–416

    Article  CAS  Google Scholar 

  7. de Lange DW, Verhoef S, Gorter G, Kraaijenhagen RJ, van de Wiel A, Akkerman JW (2007) Polyphenolic grape extract inhibits platelet activation through PECAM-1: an explanation for the French paradox. Alcohol Clin Exp Res 31:1308–1314

    Article  CAS  Google Scholar 

  8. de Lange DW, Scholman WL, Kraaijenhagen RJ, Akkerman JW, van de Wiel A (2004) Alcohol and polyphenolic grape extract inhibit platelet adhesion in flowing blood. Eur J Clin Invest 34:818–824

    Article  Google Scholar 

  9. Bhatt SR, Lokhandwala MF, Banday AA (2011) Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 667:258–264

    Article  CAS  Google Scholar 

  10. Soares De Moura R, Costa Viana FS, Souza MA, Kovary K, Guedes DC, Oliveira EP, Rubenich LM, Carvalho LC, Oliveira RM, Tano T, Gusmao Correia ML (2002) Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J Pharm Pharmacol 54:1515–1520

    Article  CAS  Google Scholar 

  11. Chacon MR, Ceperuelo-Mallafre V, Maymo-Masip E, Mateo-Sanz JM, Arola L, Guitierrez C, Fernandez-Real JM, Ardevol A, Simon I, Vendrell J (2009) Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 47:137–142

    Article  CAS  Google Scholar 

  12. Dolinsky VW, Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 1812:1477–1489

    Article  CAS  Google Scholar 

  13. Oron-Herman M, Kamari Y, Grossman E, Yeger G, Peleg E, Shabtay Z, Shamiss A, Sharabi Y (2008) Metabolic syndrome comparison of the two commonly used animal models. Am J Hypertens 21:1018–1022

    Article  CAS  Google Scholar 

  14. Sharabi Y, Oron-Herman M, Kamari Y, Avni I, Peleg E, Shabtay Z, Grossman E, Shamiss A (2007) Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 20:206–210

    Article  CAS  Google Scholar 

  15. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179:43–49

    Article  CAS  Google Scholar 

  16. Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK (2012) Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 66:260–268

    Article  CAS  Google Scholar 

  17. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull (Tokyo) 46:373–375

    Article  CAS  Google Scholar 

  18. Page B, Page M, Noel C (1993) A new fluorometric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476

    CAS  Google Scholar 

  19. Hazebrouck S, Camoin L, Faltin Z, Strosberg AD, Eshdat Y (2000) Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli. J Biol Chem 275:28715–28721

    Article  CAS  Google Scholar 

  20. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Forstermann U (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106:1652–1658

    Article  CAS  Google Scholar 

  21. Mulvihill EE, Huff MW (2010) Antiatherogenic properties of flavonoids: implications for cardiovascular health. Can J Cardiol 26(Suppl A):17A–21A

    Article  CAS  Google Scholar 

  22. Aubin MC, Lajoie C, Clement R, Gosselin H, Calderone A, Perrault LP (2008) Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther 325:961–968

    Article  CAS  Google Scholar 

  23. Chander V, Chopra K (2006) Possible role of nitric oxide in the protective effect of resveratrol in 5/6th nephrectomized rats. J Surg Res 133:129–135

    Article  CAS  Google Scholar 

  24. Inanaga K, Ichiki T, Matsuura H, Miyazaki R, Hashimoto T, Takeda K, Sunagawa K (2009) Resveratrol attenuates angiotensin II-induced interleukin-6 expression and perivascular fibrosis. Hypertens Res 32:466–471

    Article  CAS  Google Scholar 

  25. Miatello R, Vazquez M, Renna N, Cruzado M, Zumino AP, Risler N (2005) Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens 18:864–870

    Article  CAS  Google Scholar 

  26. Rivera L, Moron R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063

    Article  CAS  Google Scholar 

  27. Thandapilly SJ, Wojciechowski P, Behbahani J, Louis XL, Yu L, Juric D, Kopilas MA, Anderson HD, Netticadan T (2010) Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens 23:192–196

    Article  CAS  Google Scholar 

  28. Robich MP, Chu LM, Chaudray M, Nezafat R, Han Y, Clements RT, Laham RJ, Manning WJ, Coady MA, Sellke FW (2010) Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery 148:453–462

    Article  Google Scholar 

  29. Wallerath T, Poleo D, Li H, Forstermann U (2003) Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 41:471–478

    Article  CAS  Google Scholar 

  30. Mikstacka R, Rimando AM, Ignatowicz E (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods Hum Nutr 65:57–63

    Article  CAS  Google Scholar 

  31. Kamari Y, Grossman E, Oron-Herman M, Peleg E, Shabtay Z, Shamiss A, Sharabi Y (2007) Metabolic stress with a high carbohydrate diet increases adiponectin levels. Horm Metab Res 39:384–388

    Article  CAS  Google Scholar 

  32. Kamari Y, Harari A, Shaish A, Peleg E, Sharabi Y, Harats D, Grossman E (2008) Effect of telmisartan, angiotensin II receptor antagonist, on metabolic profile in fructose-induced hypertensive, hyperinsulinemic, hyperlipidemic rats. Hypertens Res 31:135–140

    Article  CAS  Google Scholar 

  33. Grossman E (2008) Does increased oxidative stress cause hypertension? Diabetes Care 31(Suppl 2):S185–S189

    Article  CAS  Google Scholar 

  34. Akpaffiong MJ, Taylor AA (1998) Antihypertensive and vasodilator actions of antioxidants in spontaneously hypertensive rats. Am J Hypertens 11:1450–1460

    Article  CAS  Google Scholar 

  35. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535–542

    Article  CAS  Google Scholar 

  36. Vitseva O, Varghese S, Chakrabarti S, Folts JD, Freedman JE (2005) Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol 46:445–451

    Article  CAS  Google Scholar 

  37. Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149

    Article  CAS  Google Scholar 

  38. Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106:1614–1617

    Article  CAS  Google Scholar 

  39. Nicholson SK, Tucker GA, Brameld JM (2008) Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc 67:42–47

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Dr. Avshhalom Leibowitz, Dr. Edna Peleg and Dr. Ehud Grossman received a research grant from Fruitura (formly Hi-Nutra) Bioscience Ltd. Rehovot, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leibowitz.

Additional information

A. Leibowitz and Z. Faltin have equally contributed to this study and are co-first authors of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibowitz, A., Faltin, Z., Perl, A. et al. Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur J Nutr 53, 973–980 (2014). https://doi.org/10.1007/s00394-013-0601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0601-z

Keywords

Navigation