Skip to main content
Log in

Dietary conjugated α-linolenic acid did not improve glucose tolerance in a neonatal pig model

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1 % dietary supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in neonatal pigs.

Methods

Since mono-CLNA isomers combine one conjugated two-double-bond system with an n-3 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural characteristics of the molecules by comparing a CLNA diet with three other dietary fats: (1) conjugated linoleic acid (c9-t11-18:2 + t10-c12-18:2; CLA), (2) non-conjugated n-3 PUFA, and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed among the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted.

Results

Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (p > 0.82 and p > 0.57, respectively) compared with other dietary groups. Plasma glucose, insulin, and C-peptide responses to OGTT and IVGTT in the CLNA group were not different from the three other dietary groups (p > 0.18 and p > 0.15, respectively). Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty acids (18:3n-3; 20:3n-3; 22:5n-3; p < 0.001).

Conclusions

These results suggest that providing 1 % mono-CLNA is not effective in improving insulin sensitivity in neonatal pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pariza MW, Ha YL (1990) Conjugated dienoic derivatives of linoleic acid: a new class of anticarcinogens. Med Oncol Tumor Pharmacother 7:169–171

    CAS  Google Scholar 

  2. Plourde M, Jew S, Cunnane SC, Jones PJ (2008) Conjugated linoleic acids: why the discrepancy between animal and human studies? Nutr Rev 66:415–421. doi:10.1111/j.1753-4887.2008.00051.x

    Article  Google Scholar 

  3. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810. doi:10.1093/ilar.47.3.243

    Article  CAS  Google Scholar 

  4. Hennessy AA, Ross RP, Devery R, Stanton C (2011) The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46:105–119. doi:10.1007/s11745-011-3636-z

    Article  CAS  Google Scholar 

  5. Plourde M, Destaillats F, Chouinard PY, Angers P (2007) Conjugated α-linolenic acid isomers in bovine milk and muscle. J Dairy Sci 90:5269–5275. doi:10.3168/jds.2007-0157

    Article  CAS  Google Scholar 

  6. Destaillats F, Berdeaux O, Sébédio JL, Juaneda P, Grégoire S, Chardigny JM, Bretillon L, Angers P (2005) Metabolites of conjugated isomers of α-linolenic acid (CLnA) in the rat. J Agric Food Chem 53:1422–1427. doi:10.1021/jf0481958

    Article  CAS  Google Scholar 

  7. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, Chiarelli F, Amemiyia S, Berenson G, Caprio S et al (2010) Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab 95:5189–5198. doi:10.1210/jc.2010-1047

    Article  CAS  Google Scholar 

  8. World Health Organization (2000) Obesity: preventing and managing the global epidemic. In: Consultation RoaW (ed) WHO technical report series. World Health Organization, Geneva, p 252

    Google Scholar 

  9. Vroegrijk IOCM, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-Riera J, Zondag GCM, Romijn JA et al (2011) Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem Toxicol 49:1426–1430. doi:10.1016/j.fct.2011.03.037

    Article  CAS  Google Scholar 

  10. Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37:343–350

    Article  CAS  Google Scholar 

  11. Saha SS, Chakraborty A, Ghosh S, Ghosh M (2012) Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity. Eur J Nutr 51:483–495. doi:10.1007/s00394-011-0233-0

    Article  CAS  Google Scholar 

  12. McFarlin BK, Strohacker KA, Kueht ML (2009) Pomegranate seed oil consumption during a period of high-fat feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br J Nutr 102:54–59. doi:10.1017/S0007114508159001

    Article  CAS  Google Scholar 

  13. Al-Muammar MN, Khan F (2012) Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 28:595–604. doi:10.1016/j.nut.2011.11.013

    Article  CAS  Google Scholar 

  14. Henriksen EJ, Teachey MK, Taylor ZC, Jacob S, Ptock A, Kramer K, Hasselwander O (2003) Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am J Physiol Endocrinol Metab 285:E98–E105. doi:10.1152/ajpendo.00013.2003

    CAS  Google Scholar 

  15. Behme MT (1996) Dietary fish oil enhances insulin sensitivity in miniature pigs. J Nutr 126:1549–1553

    CAS  Google Scholar 

  16. Winzell MS, Pacini G, Ahrén B (2006) Insulin secretion after dietary supplementation with conjugated linoleic acids and n-3 polyunsaturated fatty acids in normal and insulin-resistant mice. Am J Physiol Endocrinol Metab 290:E347–E354. doi:10.1152/ajpendo.00163.2005

    Article  CAS  Google Scholar 

  17. Plourde M, Ledoux M, Grégoire S, Portois L, Fontaine JJ, Carpentier YA, Angers P, Chardigny JM, Sébédio JL (2007) Adverse effects of conjugated alpha-linolenic acids (CLnA) on lipoprotein profile on experimental atherosclerosis in hamsters. Animal 1:905–910. doi:10.1017/S1751731107000079

    Article  CAS  Google Scholar 

  18. Cortamira NO, Seve B, Lebreton Y, Ganier P (1991) Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaned piglets: relationship to plasma insulin. Br J Nutr 66:423–435. doi:10.1079/BJN19910045

    Article  CAS  Google Scholar 

  19. Trottier JP (2005) Synthèse et purification d’isomères conjugués des acides linoléique et α-linolénique. In: Faculté des sciences de l’argiculture et de l’alimentation. Université Laval, Quebec, p 78

  20. Matte J, Girard C, Sève B (1986) Importance of folic acid administered during gestation on haematological status of piglets. Can J Anim Sci 66:523–527

    Article  CAS  Google Scholar 

  21. Matte JJ (1999) A rapid and non-surgical procedure for jugular catheterization of pigs. Lab Anim 33:258–264

    Article  CAS  Google Scholar 

  22. Agriculture Canada (1993) Recommended code of practice for care and handling of pigs. Publication No. 1771E. Agriculture Canada, Ottawa, ON, Canada

  23. Canadian Council on Animal Care (1993) Guide to the care and use of experimental animals. Vol 1, Canadian Council on Animal Care, Ottawa, ON, Canada

  24. Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192

    Article  CAS  Google Scholar 

  25. Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX (1995) The use of areas under in diabetes research. Diabetes Care 18:245–250

    Article  CAS  Google Scholar 

  26. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  CAS  Google Scholar 

  27. Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man. Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68:1456–1467

    Article  CAS  Google Scholar 

  28. Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN (2003) MINMOD millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther 5:1003–1015. doi:10.1089/152091503322641060

    Article  CAS  Google Scholar 

  29. Castellano CA, Audet I, Laforest JP, Chouinard Y, Matte JJ (2010) Fish oil diets do not improve insulin sensitivity and secretion in healthy adult male pigs. Br J Nutr 103:189–196. doi:10.1017/S0007114509991590

    Article  CAS  Google Scholar 

  30. Littell RC, Henry PR, Ammerman CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231

    CAS  Google Scholar 

  31. Puiman P, Stoll B (2008) Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care 11:601–606. doi:10.1097/MCO.0b013e32830b5b15

    Article  CAS  Google Scholar 

  32. Christoffersen B, Ribel U, Raun K, Golozoubova V, Pacini G (2009) Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: introduction of a new, simpler method. Am J Physiol Regul Integr Comp Physiol 297:R1195–R1201. doi:10.1152/ajpregu.90851.2008

    Article  CAS  Google Scholar 

  33. Bellinger DA, Merricks EP, Nichols TC (2006) Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47:243–258

    Article  CAS  Google Scholar 

  34. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  CAS  Google Scholar 

  35. Noguchi R, Yasui Y, Suzuki R, Hosokawa M, Fukunaga K, Miyashita K (2001) Dietary effects of bitter gourd oil on blood and liver lipids of rats. Arch Biochem Biophys 396:207–212. doi:10.1006/abbi.2001.2624

    Article  CAS  Google Scholar 

  36. Gavino VC, Gavino G, Leblanc MJ, Tuchweber B (2000) An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 130:27–29

    CAS  Google Scholar 

  37. Liu X, Joseph SV, Wakefield AP, Aukema HM, Jones PJ (2012) High dose trans-10, cis-12 CLA increases lean body mass in hamsters, but elevates levels of plasma lipids and liver enzyme biomarkers. Lipids 47:39–46. doi:10.1007/s11745-011-3616-3

    Article  CAS  Google Scholar 

  38. Miranda J, Churruca I, Fernandez-Quintela A, Rodriguez VM, Macarulla MT, Simon E, Portillo MP (2009) Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters. Br J Nutr 102:1583–1589. doi:10.1017/S0007114509990912

    Article  CAS  Google Scholar 

  39. Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans—metabolic effects. Lipids 36:773–781

    Article  CAS  Google Scholar 

  40. Yang L, Leung KY, Cao Y, Huang Y, Ratnayake WMN, Chen ZY (2005) α-linolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br J Nutr 93:433–438. doi:10.1079/bjn20041365

    Article  CAS  Google Scholar 

  41. Baxheinrich A, Stratmann B, Lee-Barkey YH, Tschoepe D, Wahrburg U (2012) Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. Br J Nutr 108:682–691. doi:10.1017/S0007114512002875

    Article  CAS  Google Scholar 

  42. Hontecillas R, Diguardo M, Duran E, Orpi M, Bassaganya-Riera J (2008) Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR α expression in adipose tissue. Clin Nutr 27:764–772. doi:10.1016/j.clnu.2008.07.007

    Article  CAS  Google Scholar 

  43. Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH, Yang HL, Kuo YH, Chyuan JH, Chao PM (2012) Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr 142:1197–1204. doi:10.3945/jn.112.159939

    Article  CAS  Google Scholar 

  44. Arao K, Wang YM, Inoue N, Hirata J, Cha JY, Nagao K, Yanagita T (2004) Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats. Lipids Health Dis 3. doi:10.1186/1476-511X-3-24

  45. Plourde M (2006) Étude des effets physiologiques des acides alpha-linoléniques conjugués. In: Sciences de l’alimentation et de la nutrition. Université Laval, Quebec, p 224

  46. Miranda J, Fernández-Quintela A, Macarulla MT, Churruca I, García C, Rodríguez VM, Simón E, Portillo MP (2009) A comparison between CLNA and CLA effects on body fat, serum parameters and liver composition. J Physiol Biochem 65:25–32. doi:10.1007/BF03165966

    Article  CAS  Google Scholar 

  47. Shinohara N, Ito J, Tsuduki T, Honma T, Kijima R, Sugawara S, Arai T, Yamasaki M, Ikezaki A, Yokoyama M et al (2012) Jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. J Oleo Sci 61:433–441. doi:10.5650/jos.61.433

    Article  CAS  Google Scholar 

  48. Yuan G, Sinclair AJ, Xu C, Li D (2009) Incorporation and metabolism of punicic acid in healthy young humans. Mol Nutr Food Res 53:1336–1342. doi:10.1002/mnfr.200800520

    Article  CAS  Google Scholar 

  49. Chartrand R, Matte JJ, Lessard M, Chouinard PY, Giguere A, Laforest JP (2003) Effect of dietary fat sources on systemic and intrauterine synthesis of prostaglandins during early pregnancy in gilts. J Anim Sci 81:726–734

    CAS  Google Scholar 

  50. Riccardi G, Giacco R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23:447–456. doi:10.1016/j.clnu.2004.02.006

    Article  CAS  Google Scholar 

  51. Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM, Catry E, de Backer FC, Dejeans N, Dewulf EM, Sohet FM, Portois L et al (2011) Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: Genomic analysis of cellular targets. PLoS ONE 6. doi:10.1371/journal.pone.0023365

  52. Houseknecht KL, Heuvel JPV, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 244:678–682. doi:10.1006/bbrc.1998.8303

    Article  CAS  Google Scholar 

  53. Chicco AG, D’Alessandro ME, Hein GJ, Oliva ME, Lombardo YB (2009) Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 101:41–50. doi:10.1017/S000711450899053X

    Article  CAS  Google Scholar 

  54. Muramatsu T, Yatsuya H, Toyoshima H, Sasaki S, Li Y, Otsuka R, Wada K, Hotta Y, Mitsuhashi H, Matsushita K et al (2010) Higher dietary intake of alpha-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. Prev Med 50:272–276. doi:10.1016/j.ypmed.2010.02.014

    Article  CAS  Google Scholar 

  55. Armario A, Castellanos JM, Balasch J (1985) Chronic noise stress and insulin secretion in male rats. Physiol Behav 34:359–361

    Article  CAS  Google Scholar 

  56. Funderburke DW, Seerley RW (1990) The effects of postweaning stressors on pig weight change, blood, liver and digestive tract characteristics. J Anim Sci 68:155–162

    CAS  Google Scholar 

  57. Faber OK, Binder C (1986) C-peptide: an index of insulin secretion. Diabetes Metab Rev 2:331–345

    Article  CAS  Google Scholar 

  58. Hontecillas R, O’Shea M, Einerhand A, Diguardo M, Bassaganya-Riera J (2009) Activation of PPAR γ and α by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J Am Coll Nutr 28:184–195. doi:10.1080/07315724.2009.10719770

    Article  CAS  Google Scholar 

  59. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542. doi:10.2337/diabetes.49.9.1534

    Article  CAS  Google Scholar 

  60. Kelley DS, Vemuri M, Adkins Y, Gill SHS, Fedor D, Mackey BE (2009) Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr 101:701–708. doi:10.1017/S0007114508027451

    Article  CAS  Google Scholar 

  61. Fernández-Fígares I, Lachica M, Martín A, Nieto R, Gonzáez-Valero L, Rodríguez-López JM, Aguilera JF (2012) Impact of dietary betaine and conjugated linoleic acid on insulin sensitivity, protein and fat metabolism of obese pigs. Animal 6:1058–1067. doi:10.1017/S1751731111002308

    Article  CAS  Google Scholar 

  62. Risérus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10 cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521. doi:10.2337/diacare.25.9.1516

    Article  Google Scholar 

  63. Vessby B (2000) Dietary fat and insulin action in humans. Br J Nutr 83:S91–S96. doi:10.1017/S000711450000101X

    Article  CAS  Google Scholar 

  64. McAuley K, Mann J (2006) Nutritional determinants of insulin resistance. J Lipid Res 47:1668–1676. doi:10.1194/jlr.R600015-JLR200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Guillette for her invaluable technical assistance; to Mélanie Turcotte and the animal care team under supervision of D. Morrissette; and to S. Methot for his help with statistical analysis. The authors are also grateful to Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT) and Naturia Inc (Sherbrooke, Canada) for a Ph.D. scholarship to M. P. at the time where the experiment was carried out and to Fonds de recherche Québec-santé for a current Junior 1 salary award. CLA and mono-CLNA were generously provided by Naturia Inc. (Sherbrooke, QC, Canada). The financial support was provided by Naturia Inc and the Mathing Investment Initiative of Agriculture and Agri-Food Canada.

Conflict of interest

None of the authors has any financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian-Alexandre Castellano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellano, CA., Baillargeon, JP., Plourde, M. et al. Dietary conjugated α-linolenic acid did not improve glucose tolerance in a neonatal pig model. Eur J Nutr 53, 761–768 (2014). https://doi.org/10.1007/s00394-013-0580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0580-0

Keywords

Navigation