Skip to main content
Log in

Beneficial effects of omega-3 fatty acids on the consequences of a fructose diet are not mediated by PPAR delta or PGC1 alpha

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To study, in high-fructose-fed rats, the effect of a dietary enrichment in omega-3 polyunsaturated fatty acids (n-3 PUFA) on the expression of genes involved in lipid metabolism and cardiovascular function.

Methods

Twenty-eight male “Wistar Han” rats received for 8 weeks, either a standard chow food or an isocaloric 67 % fructose diet enriched or not in alpha-linolenic acid (ALA) or in docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) mix (DHA/EPA). After sacrifice, blood was withdrawn for biochemical analyses; heart, periepididymal adipose tissue and liver were collected and analyzed for the expression of 22 genes by real-time PCR.

Results

Fructose intake resulted in an increase in liver weight and triglyceride content, plasma triglyceride and cholesterol concentrations, although no difference in glucose and insulin. In the liver, lipogenesis was promoted as illustrated by an increase in stearoyl-CoA desaturase and fatty acid synthase (Fasn) together with a decrease in PPAR gamma, delta and PPAR gamma coactivator 1 alpha (PGC1 alpha) expression. In the heart, Fasn and PPAR delta expression were increased. The addition of ALA or DHA/EPA into the diet resulted in a protection against fructose effects except for the decreased expression of PPARs in the liver that was not counterbalanced by n-3 PUFA suggesting that n-3 PUFA and fructose act independently on the expression of PPARs and PGC1 alpha.

Conclusions

In liver, but not in heart, the fructose-enriched diet induces an early tissue-specific reduction in PPAR gamma and delta expression, which is insensitive to n-3 PUFA intake and dissociated from lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:537–543

    CAS  Google Scholar 

  2. Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 24:204–209

    Article  CAS  Google Scholar 

  3. Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB (2009) Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr 89:1037–1042

    Article  CAS  Google Scholar 

  4. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee V, Menorca RI, Keim NL, Havel PJ (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 96:E1596–E1605

    Article  CAS  Google Scholar 

  5. Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46

    Article  CAS  Google Scholar 

  6. Yoshida M, McKeown NM, Rogers G, Meigs JB, Saltzman E, D’Agostino R, Jacques PF (2007) Surrogate markers of insulin resistance are associated with consumption of sugar-sweetened drinks and fruit juice in middle and older-aged adults. J Nutr 137:2121–2127

    CAS  Google Scholar 

  7. Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157

    Article  Google Scholar 

  8. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516

    Article  CAS  Google Scholar 

  9. Kazumi T, Odaka H, Hozumi T, Ishida Y, Amano N, Yoshino G (1997) Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr J 44:239–245

    Article  CAS  Google Scholar 

  10. Kok N, Roberfroid M, Delzenne N (1996) Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabolism 45:1547–1550

    Article  CAS  Google Scholar 

  11. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L (2011) High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57:51–64

    Article  CAS  Google Scholar 

  12. Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2:5

    Article  Google Scholar 

  13. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Tomita S, Sekiya M, Hasty A, Nakagawa Y, Sone H, Toyoshima H, Ishibashi S, Osuga J, Yamada N (2004) Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53:560–569

    Article  CAS  Google Scholar 

  14. Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A (2002) Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab 282:E1180–E1190

    CAS  Google Scholar 

  15. Rutledge AC, Adeli K (2007) Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 65:S13–S23

    Article  Google Scholar 

  16. Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15

    Article  CAS  Google Scholar 

  17. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353

    Article  CAS  Google Scholar 

  18. Stanhope KL, Havel PJ (2008) Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol 19:16–24

    Article  CAS  Google Scholar 

  19. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123:2292–2333

    Article  Google Scholar 

  20. Ayalew-Pervanchon A, Rousseau D, Moreau D, Assayag P, Weill P, Grynberg A (2007) Long-term effect of dietary {alpha}-linolenic acid or decosahexaenoic acid on incorporation of decosahexaenoic acid in membranes and its influence on rat heart in vivo. Am J Physiol Heart Circ Physiol 293:H2296–H2304

    Article  CAS  Google Scholar 

  21. Bucher HC, Hengstler P, Schindler C, Meier G (2002) N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am J Med 112:298–304

    Article  CAS  Google Scholar 

  22. Harris WS, Mozaffarian D, Lefevre M, Toner CD, Colombo J, Cunnane SC, Holden JM, Klurfeld DM, Morris MC, Whelan J (2009) Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. J Nutr 139:804S–819S

    Article  CAS  Google Scholar 

  23. Jump DB, Depner CM, Tripathy S (2012) Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res (in press). doi:10.1194/jlr.R027904

  24. Rousseau D, Helies-Toussaint C, Moreau D, Raederstorff D, Grynberg A (2003) Dietary n-3 PUFAs affect the blood pressure rise and cardiac impairments in a hyperinsulinemia rat model in vivo. Am J Physiol Heart Circ Physiol 285:H1294–H1302

    CAS  Google Scholar 

  25. Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913

    Article  CAS  Google Scholar 

  26. Jump DB, Clarke SD (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90

    Article  CAS  Google Scholar 

  27. Lang CA, Davis RA (1990) Fish oil fatty acids impair VLDL assembly and/or secretion by cultured rat hepatocytes. J Lipid Res 31:2079–2086

    CAS  Google Scholar 

  28. Clarke SD, Jump D (1997) Polyunsaturated fatty acids regulate lipogenic and peroxisomal gene expression by independent mechanisms. Prostaglandins Leukot Essent Fatty Acids 57:65–69

    Article  CAS  Google Scholar 

  29. Wendland E, Farmer A, Glasziou P, Neil A (2006) Effect of alpha linolenic acid on cardiovascular risk markers: a systematic review. Heart 92:166–169

    Article  CAS  Google Scholar 

  30. Robbez Masson V, Lucas A, Gueugneau AM, Macaire JP, Paul JL, Grynberg A, Rousseau D (2008) Long-chain (n-3) polyunsaturated fatty acids prevent metabolic and vascular disorders in fructose-fed rats. J Nutr 138:1915–1922

    Google Scholar 

  31. Truong H, DiBello JR, Ruiz-Narvaez E, Kraft P, Campos H, Baylin A (2009) Does genetic variation in the Delta6-desaturase promoter modify the association between alpha-linolenic acid and the prevalence of metabolic syndrome? Am J Clin Nutr 89:920–925

    Article  CAS  Google Scholar 

  32. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  34. Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA (2003) Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens 16:973–978

    Article  CAS  Google Scholar 

  35. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4–12

    CAS  Google Scholar 

  36. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, Okunade A, Klein S (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA 106:15430–15435

    Article  CAS  Google Scholar 

  37. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028

    Article  CAS  Google Scholar 

  38. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  CAS  Google Scholar 

  39. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM (2000) The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275:30132–30138

    Article  CAS  Google Scholar 

  40. Akiyama TE, Lambert G, Nicol CJ, Matsusue K, Peters JM, Brewer HB Jr, Gonzalez FJ (2004) Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet. J Biol Chem 279:20874–20881

    Article  CAS  Google Scholar 

  41. Barroso E, Rodriguez-Calvo R, Serrano-Marco L, Astudillo AM, Balsinde J, Palomer X, Vazquez-Carrera M (2011) The PPARbeta/delta activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1alpha-Lipin 1-PPARalpha pathway leading to increased fatty acid oxidation. Endocrinology 152:1848–1859

    Article  CAS  Google Scholar 

  42. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    Article  CAS  Google Scholar 

  43. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  CAS  Google Scholar 

  44. Barish GD, Narkar VA, Evans RM (2006) PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597

    Article  CAS  Google Scholar 

  45. Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    CAS  Google Scholar 

  46. Rodriguez-Cruz M, Sanchez Gonzalez R, Sanchez Garcia AM, Lopez-Alarcon M (2012) Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Gene 496:28–36

    Article  CAS  Google Scholar 

  47. Qin X, Xie X, Fan Y, Tian J, Guan Y, Wang X, Zhu Y, Wang N (2008) Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology 48:432–441

    Article  CAS  Google Scholar 

  48. Clarke SD, Turini M, Jump DB, Abraham S, Reedy M (1998) Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation. Z Ernahrungswiss 37(Suppl 1):14–20

    CAS  Google Scholar 

  49. Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J (2002) N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 282:E664–E671

    CAS  Google Scholar 

  50. Bray GA (2012) Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep (in press). doi:10.1007/s11883-012-0276-6

Download references

Acknowledgments

The authors thank Pr Michel Miniconi for the supervision of statistical tests. This work was supported by the European LipGene project (EU sixth Framework Integrated Program, contract FOOD-CT-2003-505944) WP 1.3.5.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite Gastaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsenty, J., Landrier, JF., Rousseau-Ralliard, D. et al. Beneficial effects of omega-3 fatty acids on the consequences of a fructose diet are not mediated by PPAR delta or PGC1 alpha. Eur J Nutr 52, 1865–1874 (2013). https://doi.org/10.1007/s00394-012-0488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0488-0

Keywords

Navigation