Skip to main content

Advertisement

Log in

Soy isoflavones reduce heat shock proteins in experimental atherosclerosis

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Summary

Background

Soy isoflavones may affect several biochemical pathways like the synthesis of nitric oxide (NO) and heat shock proteins (HSP) that are important factors for atherosclerosis development.

The aim of the study

The purpose of this study was to investigate the influence of soy isoflavones on the production of NO and HSP60, HSP70 and HSC70 in experimental atherosclerosis.

Methods

One group of rabbits (New Zealand) was fed an atherogenic diet containing 27 % casein (CAS) and another group was fed the same diet supplemented with soy isoflavones (5 mg/kg/day) (ISO). Blood samples were obtained monthly and after six months of feeding, the rabbits were sacrificed and the aortas were removed.

Results

The ISO group showed a significant reduction of cholesterol in LDL (36.2 %) and in aorta (36 %), as well as, an increase of HDL-cholesterol (2.1 times) in relation to the CAS group. The concentration of NO metabolites (NOx) in blood plasma and the levels of reactive antibodies to HSC70 in blood plasma and to HSC70 and HSP70 in aortic tissue were significantly decreased in the ISO group. Isoflavones promoted a reduction of content of HSP60, HSP70 and HSC70 in aortic arch analyzed by immunohistochemistry. The isoflavone supplementation promoted a reduction of cholesterol content in aorta (62.2 %) (p < 0.05).

Conclusions

Soy isoflavones reduced hypercholesterolemia, the production of HSP60, HSC70 and HSP70 and reactive antibodies to HSC70 in serum and to HSC70 and HSP70 in aorta, as well as, the cholesterol content in atherosclerotic lesions in rabbits fed a casein-based atherogenic diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leinonen M, Saikku P (2002) Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis 2:11–17

    Article  Google Scholar 

  2. Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017

    Article  CAS  Google Scholar 

  3. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt–Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    CAS  Google Scholar 

  4. Johnson AD, Berberian PA, Tytell M, Bond MG (1993) Atherosclerosis alters the localization of HSP70 in human and macaque aortas. Exp Mol Pathol 58:155–168

    Article  CAS  Google Scholar 

  5. Xu Q, Kleindienst R, Schett G, Waitz W, Jindal S, Gupta RS, Dietrich H, Wick G (1996) Regression of arteriosclerotic lesions induced by immunization with heat shock protein 65–containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis 123:145–155

    Article  CAS  Google Scholar 

  6. Bason C, Corrocher R, Lunardi C, Puccetti P, Olivieri O, Girelli D, Navone R, Beri R, Millo E, Margonato A, Martinelli N, Puccetti A (2003) Interaction of antibodies against cytomegalovirus with heat–shock protein 60 in pathogenesis of atherosclerosis. Lancet 362:1971–1977

    Article  CAS  Google Scholar 

  7. Hirvonen MR, Brune B, Lapetina EG (1996) Heat shock proteins and macrophage resistance to the toxic effects of nitric oxide. Biochem J 315(Pt 3):845–849

    CAS  Google Scholar 

  8. Luoma JS, Yla–Herttuala S (1999) Expression of inducible nitric oxide synthase in macrophages and smooth muscle cells in various types of human atherosclerotic lesions. Virchows Arch 434:561–568

    Article  CAS  Google Scholar 

  9. Bermejo A, Zarzuelo A, Duarte J (2003) In vivo vascular effects of genistein on a rat model of septic shock induced by lipopolysaccharide. J Cardiovasc Pharmacol 42:329–338

    Article  CAS  Google Scholar 

  10. Lahde M, Korhonen R, Moilanen E (2000) Regulation of nitric oxide production in cultured human T84 intestinal epithelial cells by nuclear factorkappa B–dependent induction of inducible nitric oxide synthase after exposure to bacterial endotoxin. Aliment Pharmacol Ther 14:945–954

    Article  CAS  Google Scholar 

  11. Orlicek SL, Meals E, English BK (1996) Differential effects of tyrosine kinase inhibitors on tumor necrosis factor and nitric oxide production by murine macrophages. J Infect Dis 174:638–642

    CAS  Google Scholar 

  12. Kiang JG (2003) Genistein inhibits herbimycin A–induced over–expression of inducible heat shock protein 70 kDa. Mol Cell Biochem 245:191–199

    Article  CAS  Google Scholar 

  13. Roberts DC, Stalmach ME, Khalil MW, Hutchinson JC, Carroll KK (1981) Effects of dietary protein on composition and turnover of apoproteins in plasma lipoproteins of rabbits. Can J Biochem 59:642–647

    Article  CAS  Google Scholar 

  14. Pereira IRO, Damasceno NRT, Pereira EC, Tavares LC, Abdalla DSP (2002) Avaliação das concentraçoes plasmática e urinária de isoflavonas purificadas de soja. Revista Brasileira de Ciências Farmacêuticas 38:291–303

    CAS  Google Scholar 

  15. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  CAS  Google Scholar 

  16. Franke AA, Custer LJ, Tanaka Y (1998) Isoflavones in human breast milk and other biological fluids. Am J Clin Nutr 68:1466S–1473S

    CAS  Google Scholar 

  17. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD (1991) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet 16(4):249–255

    CAS  Google Scholar 

  18. Pereira IR, Bertolami MC, Faludi AA, Campos MF, Ferderbar S, Lima ES, Aldrighi JM, Abdalla DS (2003) Lipid peroxidation and nitric oxide inactivation in postmenopausal women. Arq Bras Cardiol 80:415–423

    Article  Google Scholar 

  19. Johnson AD, Berberian PA, Tytell M, Bond MG (1995) Differential distribution of 70–kD heat shock protein in atherosclerosis. Its potential role in arterial SMC survival. Arterioscler Thromb Vasc Biol 15:27–36

    CAS  Google Scholar 

  20. Xu Q, Kiechl S, Mayr M, Metzler B, Egger G, Oberhollenzer F, Willeit J, Wick G (1999) Association of serum antibodies to heat–shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow–up study. Circulation 100:1169–1174

    CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  22. Kurowska EM, Carroll KK (1990) Essential amino acids in relation to hypercholesterolemia induced in rabbits by dietary casein. J Nutr 120:831–836

    CAS  Google Scholar 

  23. Daley SJ, Herderick EE, Cornhill JF, Rogers KA (1994) Cholesterol–fed and casein–fed rabbit models of atherosclerosis. Part 1: Differing lesion area and volume despite equal plasma cholesterol levels. Arterioscler Thromb 14:95–104

    CAS  Google Scholar 

  24. Demonty I, Lamarche B, Jones PJ (2003) Role of isoflavones in the hypocholesterolemic effect of soy. Nutr Rev 61:189–203

    Article  Google Scholar 

  25. Greaves KA, Parks JS, Williams JK, Wagner JD (1999) Intact dietary soy protein, but not adding an isoflavone–rich soy extract to casein, improves plasma lipids in ovariectomized cynomolgus monkeys. J Nutr 129:1585–1592

    CAS  Google Scholar 

  26. Yeung J, Yu TF (2003) Effects of isoflavones (soy phyto–estrogens) on serum lipids: a meta–analysis of randomized controlled trials. Nutr J 2:15

    Article  Google Scholar 

  27. Crouse JR 3rd, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL (1999) A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 159:2070–2076

    Article  CAS  Google Scholar 

  28. Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG (1998) Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 360:142–148

    Article  CAS  Google Scholar 

  29. Samman S, Lyons Wall PM, Chan GS, Smith SJ, Petocz P (1999) The effect of supplementation with isoflavones on plasma lipids and oxidisability of low density lipoprotein in premenopausal women. Atherosclerosis 147:277–283

    Article  CAS  Google Scholar 

  30. Tikkanen MJ, Adlercreutz H (2000) Dietary soy–derived isoflavone phytoestrogens. Could they have a role in coronary heart disease prevention? Biochem Pharmacol 60(1):1–5

    Article  CAS  Google Scholar 

  31. Squadrito F, Altavilla D, Crisafulli A, Saitta A, Cucinotta D, Morabito N, D’anna R, Corrado F, Ruggeri P, Frisina N, Squadrito G (2003) Effect of genistein on endothelial function in postmenopausal women: a randomized, double–blind, controlled study. Am J Med 114 (6):470–476

    Article  CAS  Google Scholar 

  32. Freyschuss A, Xiu RJ, Benthin G, Henriksson P, Bjorkhem I, Wennmalm A (1996) Dietary cholesterol induces transient changes in plasma nitrate levels in rabbits that are correlated to microcirculatory changes. Biochem Biophys Res Commun 221:107–110

    Article  CAS  Google Scholar 

  33. Yen GC, Lai HH (2003) Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soybased food extracts. J Agric Food Chem 51:7892–7900

    Article  CAS  Google Scholar 

  34. Ruetten H, Thiemermann C, Perretti M (1999) Upregulation of ICAM–1 expression on J774. 2 macrophages by endotoxin involves activation of NF–kappaB but not protein tyrosine kinase: comparison to induction of iNOS. Mediators Inflamm 8:77–84

    Article  CAS  Google Scholar 

  35. Posch K, Schmidt K, Graier WF (1999) Selective stimulation of L–arginine uptake contributes to shear stress–induced formation of nitric oxide. Life Sci 64(8):663–670

    Article  CAS  Google Scholar 

  36. Armstrong R (2001) The physiological role and pharmacological potential of nitric oxide in neutrophil activation. Int Immunopharmacol 1(8):1501–1512

    Article  CAS  Google Scholar 

  37. Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegard J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238

    Article  CAS  Google Scholar 

  38. Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles–Ganley A, Ogunmakinwa J, Halcox J, Epstein SE (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059

    Article  CAS  Google Scholar 

  39. Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, Koranyi L (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109

    Article  CAS  Google Scholar 

  40. House SD, Guidon PTJ, Perdrizet GA, Rewinski M, Kyriakos R, Bockman RS, Mistry T, Gallagher PA, Hightower LE (2001) Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6:164–171

    Article  CAS  Google Scholar 

  41. Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, Willeit J, Kiechl S, Wick G (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    CAS  Google Scholar 

  42. Wright BH, Corton J, El–Nahas AM, Wood RFM, Pockley AG (2000) Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels 15:18–22

    Article  CAS  Google Scholar 

  43. Ghayour–Mobarhan M, New SA, Lamb DJ, Starkey BJ, Livingstone C, Wang T, Vaidya N, and Ferns GA (2005) Dietary antioxidants and fat are associated with plasma antibody titers to heat shock proteins 60 : 65, and 70 in subjects with dyslipidemia. Am J Clin Nutr 81:998–1004

    CAS  Google Scholar 

  44. Svensson PA, Asea A, Englund MC, Bausero MA, Jernas M, Wiklund O, Ohlsson BG, Carlsson LM, Carlsson B (2005) Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis. Jun 30 (Epub ahead of print)

  45. Boersma BJ, D’Alessandro T, Benton MR, Kirk M, Wilson LS, Prasain J, Botting NP, Barnes S, Darley–Usmar VM, Patel RP (2003) Neutrophil myeloperoxidase chlorinates and nitrates soy isoflavones and enhances their antioxidant properties. Free Radic Biol Med 35(11):1417–1430

    Article  CAS  Google Scholar 

  46. Raines EW, Ross R (1995) Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr 125:624S–630S

    CAS  Google Scholar 

  47. Yamakoshi J, Piskula MK, Izumi T, Tobe K, Saito M, Kataoka S, Obata A, Kikuchi M (2000) Isoflavone aglycone–rich extract without soy protein attenuates atherosclerosis development in cholesterol– fed rabbits. J Nutr 130:1887–1893

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Saes Parra Abdalla PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosier Olimpio Pereira, I., Saes Parra Abdalla, D. Soy isoflavones reduce heat shock proteins in experimental atherosclerosis. Eur J Nutr 45, 178–186 (2006). https://doi.org/10.1007/s00394-005-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-005-0581-8

Key words

Navigation