Skip to main content

Advertisement

Log in

Regulatorische T‑Zellen beim systemischen Lupus erythematodes

IL-2 entscheidend für Verlust der Toleranz

Regulatory T‑cells in systemic lupus erythematosus

IL-2 is decisive for loss of tolerance

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Dem systemischen Lupus erythematodes (SLE) liegt ein Versagen der immunologischen Toleranz zugrunde. Regulatorische T‑Zellen (Tregs) sind wesentliche Kontrollpunkte der peripheren Toleranz, indem sie die Funktion autoreaktiver Lymphozyten unterdrücken. Defekte in regulatorischen T‑Zellen sind daher ein möglicher Aspekt der SLE-Pathogenese. Dennoch sind die Arbeiten über Zahlen und Funktionen von Tregs im SLE widersprüchlich, und die definitive Rolle der regulatorischen T‑Zellen ist unklar. In diesem Review werden aktuelle Daten über Treg-Subtypen und ihre Marker im humanen SLE zusammengefasst. Außerdem werden auch Daten von Mausmodellen und Ex-vivo-Experimenten zitiert, die Ansatzpunkte für die Mechanismen liefern, welche zum Zusammenbruch der Toleranz führen. Dabei spielt IL-2 für die Aufrechterhaltung der Funktion von Tregs eine besondere Rolle und wird bereits therapeutisch eingesetzt. Die Identifikation von Markern für Tregs ebenso wie von Therapien, die die Balance zwischen Tregs und autoreaktiven T‑Zellen wiederherstellen, sind zukünftige Herausforderungen der Forschung beim SLE.

Abstract

Systemic lupus erythematosus (SLE) results from loss of immunological tolerance. Regulatory T‑cells (Treg) are major gatekeepers of peripheral tolerance by suppression of autoreactive lymphocytes. Defects in Treg function are therefore possible pathogenetic mechanisms of SLE. Despite this fact published work about numbers and functions of Tregs in SLE are contradictory and the definitive role of Treg in SLE remains unclear. In this review we summarize the current literature about Treg subtypes and the phenotypic markers in human SLE. We also discuss data from mouse models and ex vivo experiments, which provide indications for possible mechanisms that contribute to loss of tolerance. We also discuss the role of interleukin 2 (IL-2), which is decisive for the function of Treg and has been used therapeutically in preliminary trials in human SLE. The identification of novel Treg markers and the development of novel therapeutic approaches, which restore the balance between Treg and autoreactive T‑cells are future goals for research in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121

    Article  CAS  PubMed  Google Scholar 

  2. Scheinecker C, Bonelli M, Smolen JS (2010) Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. J Autoimmun 35(3):269–275

    Article  CAS  PubMed  Google Scholar 

  3. Crispin JC et al (2010) T cells as therapeutic targets in SLE. Nat Rev Rheumatol 6(6):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shevach EM (2000) Regulatory T cells in autoimmmunity. Annu Rev Immunol 18:423–449

    Article  CAS  PubMed  Google Scholar 

  5. Scalapino KJ et al (2006) Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177(3):1451–1459

    Article  CAS  PubMed  Google Scholar 

  6. Weigert O et al (2013) CD4+Foxp3+ regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice. Arthritis Res Ther 15(1):R35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Humrich JY et al (2010) Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci U S A 107(1):204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi T et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188(2):287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McNally A et al (2011) CD4+CD25+ regulatory T cells control CD8+ T‑cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108(18):7529–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim HW et al (2005) Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175(7):4180–4183

    Article  CAS  PubMed  Google Scholar 

  12. Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11(2):119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khattri R et al (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342

    Article  CAS  PubMed  Google Scholar 

  14. Brunkow ME et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73

    Article  CAS  PubMed  Google Scholar 

  15. Bennett CL et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X‑linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21

    Article  CAS  PubMed  Google Scholar 

  16. Wildin RS et al (2001) X‑linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20

    Article  CAS  PubMed  Google Scholar 

  17. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3(3):253–257

    Article  CAS  PubMed  Google Scholar 

  18. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  CAS  PubMed  Google Scholar 

  19. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  CAS  PubMed  Google Scholar 

  20. Floess S et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLOS Biol 5(2):e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baron U et al (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37(9):2378–2389

    Article  CAS  PubMed  Google Scholar 

  22. Lal G, Bromberg JS (2009) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114(18):3727–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204(7):1543–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Setoguchi R et al (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao W, Lin JX, Leonard WJ (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 23(5):598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zorn E et al (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108(5):1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sadlack B et al (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75(2):253–261

    Article  CAS  PubMed  Google Scholar 

  28. Willerford DM et al (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530

    Article  CAS  PubMed  Google Scholar 

  29. Brandenburg S et al (2008) IL-2 induces in vivo suppression by CD4(+)CD25(+)Foxp3(+) regulatory T cells. Eur J Immunol 38(6):1643–1653

    Article  CAS  PubMed  Google Scholar 

  30. Barron L et al (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 185(11):6426–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perry D et al (2011) Murine models of systemic lupus erythematosus. J Biomed Biotechnol 271694

  32. Rottman JB, Willis CR (2010) Mouse models of systemic lupus erythematosus reveal a complex pathogenesis. Vet Pathol 47(4):664–676

    Article  CAS  PubMed  Google Scholar 

  33. Wu HY, Staines NA (2004) A deficiency of CD4+CD25+ T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus 13(3):192–200

    Article  CAS  PubMed  Google Scholar 

  34. Yang CH et al (2008) Immunological mechanisms and clinical implications of regulatory T cell deficiency in a systemic autoimmune disorder: roles of IL-2 versus IL-15. Eur J Immunol 38(6):1664–1676

    Article  CAS  PubMed  Google Scholar 

  35. Lippe R et al (2012) CREMalpha overexpression decreases IL-2 production, induces a T(H)17 phenotype and accelerates autoimmunity. J Mol Cell Biol 4(2):121–123

    Article  CAS  PubMed  Google Scholar 

  36. Ohl K et al (2015) Interleukin-2 treatment reverses effects of cAMP-responsive element modulator alpha-over-expressing T cells in autoimmune-prone mice. Clin Exp Immunol 181(1):76–86

    Article  CAS  PubMed  Google Scholar 

  37. Tenbrock K et al (2002) Antisense cyclic adenosine 5′-monophosphate response element modulator up-regulates IL-2 in T cells from patients with systemic lupus erythematosus. J Immunol 169(8):4147–4152

    Article  CAS  PubMed  Google Scholar 

  38. Tenbrock K et al (2003) The cyclic adenosine 5′-monophosphate response element modulator suppresses IL-2 production in stimulated T cells by a chromatin-dependent mechanism. J Immunol 170(6):2971–2976

    Article  CAS  PubMed  Google Scholar 

  39. Juang YT et al (2005) Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 115(4):996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iikuni N et al (2009) Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol 183(3):1518–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Divekar AA et al (2011) Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186(2):924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koga T et al (2014) KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase IV, promotes generation and function of Foxp3 regulatory T cells in MRL/lpr mice. Autoimmunity 47(7):445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monk CR et al (2005) MRL/Mp CD4+,CD25-T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum 52(4):1180–1184

    Article  CAS  PubMed  Google Scholar 

  44. Lyssuk EY et al (2007) Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus. Adv Exp Med Biol 601:113–119

    Article  PubMed  Google Scholar 

  45. Valencia X et al (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178(4):2579–2588

    Article  CAS  PubMed  Google Scholar 

  46. Bonelli M et al (2008) Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol 20(7):861–868

    Article  CAS  PubMed  Google Scholar 

  47. Miyara M et al (2005) Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175(12):8392–8400

    Article  CAS  PubMed  Google Scholar 

  48. Alvarado-Sanchez B et al (2006) Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 27(2):110–118

    Article  CAS  PubMed  Google Scholar 

  49. Vargas-Rojas MI et al (2008) Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T‑cell resistance. Lupus 17(4):289–294

    Article  CAS  PubMed  Google Scholar 

  50. Lin SC et al (2007) The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest 37(12):987–996

    Article  CAS  PubMed  Google Scholar 

  51. Venigalla RK et al (2008) Reduced CD4+,CD25- T cell sensitivity to the suppressive function of CD4+,CD25high,CD127-/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum 58(7):2120–2130

    Article  PubMed  Google Scholar 

  52. Chavele KM, Ehrenstein MR (2011) Regulatory T‑cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett 585(23):3603–3610

    Article  CAS  PubMed  Google Scholar 

  53. Alunno A et al (2012) Balance between regulatory T and Th17 cells in systemic lupus erythematosus: the old and the new. Clin Dev Immunol 2012:823085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T‑cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110(8):2983–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Solomou EE et al (2001) Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J Immunol 166(6):4216–4222

    Article  CAS  PubMed  Google Scholar 

  56. Bonelli M et al (2009) Phenotypic and functional analysis of CD4+ CD25-Foxp3+ T cells in patients with systemic lupus erythematosus. J Immunol 182(3):1689–1695

    Article  CAS  PubMed  Google Scholar 

  57. Zhang B et al (2008) Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus. Ann Rheum Dis 67(7):1037–1040

    Article  CAS  PubMed  Google Scholar 

  58. Yang HX et al (2009) Are CD4+CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells? Arthritis Res Ther 11(5):R153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Horwitz DA (2010) Identity of mysterious CD4+CD25-Foxp3+ cells in SLE. Arthritis Res Ther 12(1):101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Miyara M et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911

    Article  CAS  PubMed  Google Scholar 

  61. Pan X et al (2012) Increased CD45RA+ FoxP3(low) regulatory T cells with impaired suppressive function in patients with systemic lupus erythematosus. PLOS ONE 7(4):e34662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fontenot JD et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    Article  CAS  PubMed  Google Scholar 

  63. Hill JA et al (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27(5):786–800

    Article  CAS  PubMed  Google Scholar 

  64. Zabransky DJ et al (2012) Phenotypic and functional properties of Helios+ regulatory T cells. PLOS ONE 7(3):e34547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thornton AM et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184(7):3433–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim YC et al (2012) Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood 119(12):2810–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Golding A et al (2013) The percentage of Foxp3 Helios T regulatory cells positively correlates with disease activity in systemic lupus erythematosus. Arthritis Rheum 65(11):2898–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alexander T et al (2013) Foxp3+ Helios+ regulatory T cells are expanded in active systemic lupus erythematosus. Ann Rheum Dis 72(9):1549–1558

    Article  CAS  PubMed  Google Scholar 

  69. Maggi L et al (2010) CD161 is a marker of all human IL-17-producing T‑cell subsets and is induced by RORC. Eur J Immunol 40(8):2174–2181

    Article  CAS  PubMed  Google Scholar 

  70. Cosmi L et al (2011) Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum 63(8):2504–2515

    Article  CAS  PubMed  Google Scholar 

  71. Afzali B et al (2013) CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur J Immunol 43(8):2043–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pesenacker AM et al (2013) CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 121(14):2647–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kryczek I et al (2011) IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 186(7):4388–4395

    Article  CAS  PubMed  Google Scholar 

  74. Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1‑like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Beriou G et al (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139

    Article  CAS  PubMed  Google Scholar 

  77. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663

    Article  CAS  PubMed  Google Scholar 

  78. Diamond B et al (1992) The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10:731–757

    Article  CAS  PubMed  Google Scholar 

  79. Linterman MA et al (2011) Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 17(8):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chung Y et al (2011) Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 17(8):983–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grammer AC et al (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 112(10):1506–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cappione A 3rd (2005) Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 115(11):3205–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Terrier B et al (2012) Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J Rheumatol 39(9):1819–1828

    Article  CAS  PubMed  Google Scholar 

  84. Ma L et al (2013) Imbalance of different types of CD4+forkhead box protein 3 (FoxP3)+ T cells in patients with new-onset systemic lupus erythematosus. Clin Exp Immunol 174(3):345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dolff S et al (2011) Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus. Clin Immunol 141(2):197–204

    Article  CAS  PubMed  Google Scholar 

  86. Altman A et al (1981) Analysis of T cell function in autoimmune murine strains. Defects in production and responsiveness to interleukin 2. J Exp Med 154(3):791–808

    Article  CAS  PubMed  Google Scholar 

  87. Wofsy D et al (1981) Deficient interleukin 2 activity in MRL/Mp and C57BL/6J mice bearing the lpr gene. J Exp Med 154(5):1671–1680

    Article  CAS  PubMed  Google Scholar 

  88. Linker-Israeli M et al (1983) Defective production of interleukin 1 and interleukin 2 in patients with systemic lupus erythematosus (SLE). J Immunol 130(6):2651–2655

    CAS  PubMed  Google Scholar 

  89. de Faucal P et al (1984) Impaired IL2 production by lymphocytes of patients with systemic lupus erythematosus. Ann Immunol 135D(2):161–172

    Google Scholar 

  90. Alcocer-Varela J, Alarcon-Segovia D (1982) Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 69(6):1388–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Juang YT et al (2011) Transcriptional activation of the cAMP-responsive modulator promoter in human T cells is regulated by protein phosphatase 2A-mediated dephosphorylation of SP-1 and reflects disease activity in patients with systemic lupus erythematosus. J Biol Chem 286(3):1795–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hayashi T, Hasegawa K, Adachi C (2005) Elimination of CD4(+)CD25(+) T cell accelerates the development of glomerulonephritis during the preactive phase in autoimmune-prone female NZB x NZW F mice. Int J Exp Pathol 86(5):289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. von Spee-Mayer C et al (2015) Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis doi:10.1136/annrheumdis-2015-207776

    Google Scholar 

  94. Goodman WA et al (2011) Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression. J Immunol 186(6):3336–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Linker-Israeli M et al (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 147(1):117–123

    CAS  PubMed  Google Scholar 

  96. Grondal G et al (2000) Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 18(5):565–570

    CAS  PubMed  Google Scholar 

  97. Vallin H et al (1999) Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leucocytes resembling immature dendritic cells. Clin Exp Immunol 115(1):196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vallin H et al (1999) Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 163(11):6306–6313

    CAS  PubMed  Google Scholar 

  99. Ronnblom L, Alm GV (2001) A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 194(12):F59–F63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lovgren T et al (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872

    Article  PubMed  CAS  Google Scholar 

  101. Yan B et al (2008) Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells. Arthritis Rheum 58(3):801–812

    Article  CAS  PubMed  Google Scholar 

  102. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033–1036

    Article  CAS  PubMed  Google Scholar 

  103. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    Article  CAS  PubMed  Google Scholar 

  104. Bacher N et al (2013) Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res 73(18):5647–5656

    Article  CAS  PubMed  Google Scholar 

  105. Nakamura K et al (2004) TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172(2):834–842

    Article  CAS  PubMed  Google Scholar 

  106. Oida T et al (2006) TGF-beta-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. J Immunol 177(4):2331–2339

    Article  CAS  PubMed  Google Scholar 

  107. Okamoto A et al (2011) Regulatory T‑cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:463412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Murai M et al (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10(11):1178–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao DM et al (2006) Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107(10):3925–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou X et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wehrens EJ, Prakken BJ, van Wijk F (2013) T cells out of control – impaired immune regulation in the inflamed joint. Nat Rev Rheumatol 9(1):34–42

    Article  CAS  PubMed  Google Scholar 

  112. Miyao T et al (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2):262–275

    Article  CAS  PubMed  Google Scholar 

  113. Bailey-Bucktrout SL et al (2013) Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39(5):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duarte JH et al (2009) Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39(4):948–955

    Article  CAS  PubMed  Google Scholar 

  115. Crispin JC et al (2007) Systemic lupus erythematosus: new molecular targets. Ann Rheum Dis 66(Suppl 3):iii65–iii69

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang XO et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1):44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lochner M et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 205(6):1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Voo KS et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106(12):4793–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Radhakrishnan S et al (2008) Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol 181(5):3137–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Korn T et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448(7152):484–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wong CK et al (2010) Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J Clin Immunol 30(1):45–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tenbrock.

Ethics declarations

Interessenkonflikt

K. Ohl und K. Tenbrock geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H.-I. Huppertz, Bremen

Unterstützt durch das Interdisziplinäre Zentrum für Klinische Forschung (IZKF) Aachen, E7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohl, K., Tenbrock, K. Regulatorische T‑Zellen beim systemischen Lupus erythematodes. Z Rheumatol 75, 253–264 (2016). https://doi.org/10.1007/s00393-016-0060-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0060-z

Schlüsselwörter

Keywords

Navigation