Skip to main content

Advertisement

Log in

Optimized testing for C. trachomatis DNA in synovial fluid samples in clinical practice

Optimierte Untersuchung auf C.-trachomatis-DNA in Synovialflüssigkeit für die klinische Praxis

  • Originalien
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Aim

No standardized polymerase chain reaction (PCR) assay is available for detection of Chlamydia trachomatis (C. tr.) in synovial fluid (SF) for diagnostic use in clinical practice. This study tested the performance of two optimized molecular biology methods, to determine which is best suited for detecting C. tr. in SF clinical samples from patients with various rheumatologic diseases.

Methods

Two DNA extraction methods, i.e., (1) alkaline lysis and (2) QIAEX II Gel Extraction Kit® + cetyltrimethylammonium bromide (CTAB; Qiagen, Hilden, Germany), and C. tr.-omp1-152 bp PCR were tested in SF samples from a total of 329 patients with the following diagnoses: reactive arthritis (ReA; n = 10, 4 patients had posturethritic ReA), undifferentiated arthritis (UA; n = 66), rheumatoid arthritis (RA; n = 169), psoriatic arthritis (PSA; n = 12), and osteoarthritis (OA) n = 72.

Results

In SF samples, C. tr.-omp1-152 bp PCR in combination with alkaline lysis DNA extraction allowed detection of more C. tr.-positive samples: 3/10 (30 %) ReA patients (all with posturethritic ReA) and 20/66 (38 %) UA patients were positive, compared to the 0/10 (0 %) patients with ReA and 1/66 (2 %) with UA detected using the QIAEX II Gel Extraction Kit® + CTAB. Moreover, 2/12 (17 %) SF samples from PSA patients tested positive with alkaline lysis. All samples from patients with OA and RA tested negative.

Conclusion

Alkaline lysis in combination with C. tr.-omp1-152 bp PCR emerged as the most sensitive method for identification of C. tr. in clinical SF samples.

Zusammenfassung

Ziel

Standardisierte Polymerasekettenreaktions(PCR)-Tests zum Nachweis von Chlamydia trachomatis (C. tr.) in Synovia (SF) für den diagnostischen Einsatz in der klinischen Praxis sind nicht verfügbar. In der vorliegenden Studie wurden 2 optimierte molekularbiologische Verfahren für den Nachweis von C. tr. in SF von Patienten mit unterschiedlichen rheumatischen Erkrankungen geprüft.

Methoden

Zwei DNA-Extraktionsmethoden, 1. alkalische Lyse, 2. QIAex II Gel Extraction Kit® + Cetyltrimethylammoniumbromid (CTAB, Fa. Qiagen, Hilden) mit C.-tr.-omp1-(152 bp-)PCR, wurden zur Analyse von SF-Proben von 329 Patienten mit den folgenden Diagnosen verwendet: reaktive Arthritis (ReA) n = 10 (4 davon mit posturethritischer ReA), undifferenzierte Arthritis (UA) n = 66, rheumatoide Arthritis (RA) n = 169, Psoriasisarthritis (PSA) n = 12, Osteoarthrose (OA) n = 72.

Ergebnisse

Die C.-tr.-omp1-(152 bp-)PCR in Kombination mit alkalischer Lyse erlaubte die häufigere Detektion C.-tr.-positiver SF-Proben: 3/10 (30 %) der ReA-Patienten (alle mit posturethritischer ReA), und 20/66 (38 %) der Patienten mit UA waren positiv – verglichen mit 0/10 (0 %) der ReA- und 1/66 (2 %) der UA-Patienten mit dem QIAmp gel extraction kit® + CTAB. Außerdem waren 2/12 (17 %) der SF-Proben von Patienten mit PSA positiv nach alkalischer Lyse. Alle Proben von Patienten mit OA und RA blieben negativ.

Schlussfolgerung

Alkalische Lyse in Kombination mit C.-tr.-omp1-(152 bp-)PCR zeigte sich als das sensitivste Verfahren zur Detektion von C.-tr. in klinischen SF-Proben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bas S, Griffais R, Kvien TK et al (1995) Amplification on plasmid and chromosome Chlamydia DNA in synovial fluid of patients with reactive arthritis and undifferentiated seronegative oligoarthropathies. Arthritis Rheum 38:1005–1013

    Article  CAS  PubMed  Google Scholar 

  2. Beutler AM, Whittum-Hudson JA, Nanagara R et al (1994) Intracellular location of inapparently infecting Chlamydia in synovial tissue from patients with Reiter’s syndrome. Immunol Res 13:163–171

    Article  CAS  PubMed  Google Scholar 

  3. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bobo L, Coutlee F, Yolken R et al (1990) Diagnosis of Chlamydia trachomatis cervical infection by detection of amplified DNA with an enzyme immunoassay. J Clin Microbiol 28:1968–1973

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Freise J, Bernau I, Meier S et al (2009) Detection of Chlamydia trachomatis-DNA in synovial fluid: evaluation of the sensitivity of different DNA extraction methods and amplification systems. Arthritis Res Ther 11:R175

    Article  PubMed Central  PubMed  Google Scholar 

  6. Freise J, Gerard HC, Bunke T et al (2001) Optimised sample DNA preparation for detection of Chlamydia trachomatis in synovial tissue by polymerase chain reaction and ligase chain reaction. Ann Rheum Dis 60:140–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gerard HC, Branigan PJ, Schumacher HR Jr, Hudson AP (1998) Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol 25:734–742

    CAS  PubMed  Google Scholar 

  8. Kuipers JG, Andresen J, Köhler L et al (2002) Evaluation of amplicor chlamydia PCR and LCX chlamydia LCR to detect Chlamydia trachomatis in synovial fluid. Clin Exp Rheumatol 20:185–192

    CAS  PubMed  Google Scholar 

  9. Kuipers JG, Nietfeld L, Dreses-werringloer U et al (1999) Optimized sample preparation of synovial fluid for detection of Chlamydia trachomatis DNA by polymerase chain reaction. Ann Rheum Dis 58:103–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kuipers JG, Scharmann K, Wollenhaupt J et al (1995) Sensitivities of PCR, MicroTrak, ChlamydiaEIA, IDEIA, and PACE 2 for purified Chlamydia trachomatis elementary bodies in urine, peripheral blood, peripheral blood leukocytes, and synovial fluid. J Clin Microbiol 33:3186–3190

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Kuipers JG, Sibilia J, Bas S et al (2009) Reactive and undifferentiated arthritis in North Africa: use of PCR for detection of Chlamydia trachomatis. Clin Rheumatol 28:11–16

    Article  CAS  PubMed  Google Scholar 

  12. Møller JK, Pedersen LN, Persson K (2010) Comparison of the Abbott RealTime CT new formulation assay with two other commercial assays for detection of wild-type and new variant strains of Chlamydia trachomatis. J Clin Microbiol 48:440–443

    Article  PubMed Central  PubMed  Google Scholar 

  13. Olmez N, Wang GF, Li Y et al (2001) Chlamydial nucleic acids in synovium in osteoarthritis: what are the implications? J Rheumatol 28:1874–1880

    CAS  PubMed  Google Scholar 

  14. Priem S, Rittig MG, Kamradt T et al (1997) An optimized PCR leads to rapid and highly sensitive detection of Borrelia burgdorferi in patients with Lyme borreliosis. J Clin Microbiol 35:685–690

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Schnarr S, Putschky N, Jendro MC et al (2001) Chlamydia and Borrelia DNA in synovial fluid of patients with early undifferentiated oligoarthritis: results of a prospective study. Arthritis Rheum 44:2679–2685

    Article  CAS  PubMed  Google Scholar 

  16. Siala M, Gdoura R, Younes M et al (2009) Detection and frequency of Chlamydia trachomatis DNA in synovial samples from Tunisian patients with reactive arthritis and undifferentiated oligoarthritis. FEMS Immunol Med Microbiol 55:178–186

    Article  CAS  PubMed  Google Scholar 

  17. Silveira LH, Gutierrez F, Scopelitis E et al (1993) Chlamydia- induced arthritis. Rheum Dis Clin North Am 19:351–363

    CAS  PubMed  Google Scholar 

  18. Taylor-Robinson D, Gilroy CB, Thomas BJ, Keat AC (1992) Detection of Chlamydia trachomatis DNA in joints of reactive arthritis patients by polymerase chain reaction. Lancet 340:81–82

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson NZ, Kingsley GH, Sieper J et al (1998) Lack of correlation between the detection of Chlamydia trachomatis DNA in synovial fluid from patients with a range of rheumatic diseases and the presence of an antichlamydial immune response. Arthritis Rheum 41:845–854

    Article  CAS  PubMed  Google Scholar 

  20. Wollenhaupt J, Schnarr S, Kuipers JG (1998) Bacterial antigens in reactive arthritis and spondarthritis. Rational use of laboratory testing in diagnosis and follow-up. Baillieres Clin Rheumatol 12:627–647

    Article  CAS  PubMed  Google Scholar 

  21. Zeidler H, Kuipers JG, Köhler L (2004) Chlamydia- induced arthritis. Curr Op Rheumatol 16:380–392

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge R. Hein, MD, Nienburg, Germany, G. Hoese, MD, Stadthagen, Germany, M. Mahrenholz, MD, Wennigsen, Germany, G. Pott, MD, Hannover, Germany, P. Wagener, MD, Nienburg, Germany and H.-F. Weidemann, MD, Hannover, Germany for contributing synovial fluid samples and M. Rihl, MD, Hannover, Germany for assistance with statistical calculations. We thank Prof Alan P. Hudson, Wayne State University, Detroit, MI, USA for critically reading the manuscript.

This work was supported by grant BMBF rheumatology competence network No. 01 GI 9950; project number C-3.4. The Qiagen products used for evaluation were supplied by courtesy of the Qiagen Company.

Compliance with ethical guidelines

J. Freise, I. Bernau, S. Meier, H. Zeidler, and J.G. Kuipers, state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.G. Kuipers.

Additional information

Henning Zeidler and Jens G. Kuipers contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freise, J., Bernau, I., Meier, S. et al. Optimized testing for C. trachomatis DNA in synovial fluid samples in clinical practice. Z Rheumatol 74, 824–828 (2015). https://doi.org/10.1007/s00393-015-1589-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-015-1589-y

Keywords

Schlüsselwörter

Navigation