Skip to main content

Advertisement

Log in

Comparison of Cell Culture with Three Conventional Polymerase Chain Reactions for Detecting Chlamydophila pneumoniae in Adult’s Pharyngotonsillitis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chlamydophila pneumoniae is an intracellular pathogen responsible for respiratory tract infections. The isolation of the microorganism from clinical specimens is essential for a diagnosis. However, the identification of C. pneumoniae by cell cultures is very difficult besides strongly depending on the sample conditions. The study aimed to investigate, in adult patients with pharyngotonsillitis, the frequency of Chlamydophila pneumoniae detection by cell cultures and three conventional PCRs (a conventional PCR targeting the 16S rRNA gene and two nested PCRs, targeting the 16S rRNA gene and the ompA gene, respectively). The presence of chlamydial inclusion in cell cultures was observed in 11/94 samples (11.70%) by IFA. C. pneumoniae DNA was detected in 12/94 (12.76%) specimens by the 16S rRNA gene nested PCR, 4/94 (4.26%) by ompA gene nested PCR, and in 2/94 (2.13%) by 16S rRNA single-step PCR. Our data show poor agreement between the three applied DNA-amplification methods; in fact, only 16S rRNA gene nested PCR showed a statistically significant difference. Moreover, this result allowed us to achieve a definitive confirmation of the previous finding and to avoid the risk of an overestimation of the C. pneumoniae as a pathogen in pharyngotonsillitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida NCC, Queiroz MAF, Lima SS, et al. (2019) Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases. Front Immunol 10: 87.

  2. Apfalter P, Barousch W, Nehr M et al (2003) Comparison of a new quantitative ompA-based real-Time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. J Clin Microbiol 41:592–600

    Article  CAS  Google Scholar 

  3. Bhagchandani SP, Kubade S, Nikhare PP et al (2016) Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis. Mol Diagn Ther 20:45–54

    Article  CAS  Google Scholar 

  4. Black CM, Fields PI, Messmer TO et al (1994) Detection of Chlamydia pneumoniae in clinical specimens by polymerase chain reaction using nested primers. Eur J Clin Microbiol Infect Dis 13:752–756

    Article  CAS  Google Scholar 

  5. Blasi F, Tarsia P, Aliberti S (2009) Chlamydophila pneumoniae. Clin Microbiol Infect 15:29–35

    Article  CAS  Google Scholar 

  6. Bodetti TJ, Jacobson E, Wan C et al (2002) Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst Appl Microbiol 25:146–152

    Article  Google Scholar 

  7. Boman J, Allard A, Persson K et al (1997) Rapid diagnosis of respiratory Chlamydia pneumoniae infection by nested touchdown polymerase chain reaction compared with culture and antigen detection by EIA. J Infect Dis 175:1523–1526

    Article  CAS  Google Scholar 

  8. Boman J, Gaydos CA, Quinn TC (1999) Molecular diagnosis of Chlamydia pneumoniae infection. J Clin Microbiol 37:3791–3799

    Article  CAS  Google Scholar 

  9. Dowell SF, Peeling RW, Boman J et al (2001) Standardizing chlamydia pneumoniae assays: recommendations from the centers for disease control and prevention (USA) and the laboratory centre for disease control (Canada). Clin Infect Dis 33:492–503

    Article  CAS  Google Scholar 

  10. Ekman MR, Leinonen M, Syrjala H et al (1993) Evaluation of serological methods in the diagnosis of Chlamydia pneumoniae pneumonia during an epidemic in Finland. Eur J Clin Microbiol Infect Dis 12:756–760

    Article  CAS  Google Scholar 

  11. Fulop T, Itzhaki RF, Balin BJ et al (2018) Role of microbes in the development of alzheimer’s disease: state of the Art—An international symposium Presented at the 2017 IAGG congress in San Francisco. Front Genet 9:362

    Article  Google Scholar 

  12. Gnarpe J, Gnarpe H, Sundelof B (1991) Endemic prevalence of Chlamydia pneumoniae in subjectively healthy persons. Scand J Infect Dis 23:387–388

    Article  CAS  Google Scholar 

  13. Grayston JT, Aldous MB, Easton A et al (1993) Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. J Infect Dis 168:1231–1235

    Article  CAS  Google Scholar 

  14. Group ESTG, Pelucchi C, Grigoryan L et al (2012) Guideline for the management of acute sore throat. Clin Microbiol Infect 18(1):1–28

    Article  Google Scholar 

  15. Hagel S, Schmitt S, Kesselmeier M et al (2019) M. pneumoniae and C. pneumoniae are no relevant pathogens in critically ill patients with hospital-acquired respiratory tract infections. Infection 47:471–474

    Article  Google Scholar 

  16. Hahn DL, Dodge RW (1991) Detection of Chlamydia pneumoniae. Lancet 337:849

    Article  CAS  Google Scholar 

  17. Hall L, Doerr KA, Wohlfiel SL et al (2003) Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 41:1447–1453

    Article  CAS  Google Scholar 

  18. Hedin K, Bieber L, Lindh M et al (2015) The aetiology of pharyngotonsillitis in adolescents and adults - Fusobacterium necrophorum is commonly found. Clin Microbiol Infect 21(263):e1–7

    Google Scholar 

  19. Hobson D (1977) Nongonococcal urethritis and related oculogenital infections. Proc R Soc Med 70:49–52

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hyman CL, Augenbraun MH, Roblin PM et al (1991) Asymptomatic respiratory tract infection with Chlamydia pneumoniae TWAR. J Clin Microbiol 29:2082–2083

    Article  CAS  Google Scholar 

  21. Ieven M, Goossens H (1997) Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory. Clin Microbiol Rev 10:242–256

    Article  CAS  Google Scholar 

  22. Jantos CA, Roggendorf R, Wuppermann FN et al (1998) Rapid detection of Chlamydia pneumoniae by PCR-enzyme immunoassay. J Clin Microbiol 36:1890–1894

    Article  CAS  Google Scholar 

  23. Kauppinen M, Saikku P (1995) Pneumonia due to Chlamydia pneumoniae: prevalence, clinical features, diagnosis, and treatment. Clin Infect Dis 21(Suppl 3):S244–S252

    Article  Google Scholar 

  24. Mahony JB, Chong S, Coombes BK et al (2000) Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. J Clin Microbiol 38:2622–2627

    Article  CAS  Google Scholar 

  25. Marchello C, Dale AP, Thai TN et al (2016) Prevalence of Atypical Pathogens in Patients With Cough and Community-Acquired Pneumonia: A Meta-Analysis. Ann Fam Med 14:552–566

    Article  Google Scholar 

  26. Marrodan M, Alessandro L, Farez MF et al (2019) The role of infections in multiple sclerosis. Mult Scler 25:891–901

    Article  Google Scholar 

  27. Miyashita N, Ouchi K, Kishi F et al (2008) Rapid and simple diagnosis of Chlamydophila pneumoniae pneumonia by an immunochromatographic test for detection of immunoglobulin M antibodies. Clin Vaccine Immunol 15:1128–1131

    Article  CAS  Google Scholar 

  28. Mobius P, Hotzel H, Rassbach A et al (2008) Comparison of 13 single-round and nested PCR assays targeting IS900, ISMav2, f57 and locus 255 for detection of Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 126:324–333

    Article  Google Scholar 

  29. Montalban GS, Roblin PM, Hammerschlag MR (1994) Performance of three commercially available monoclonal reagents for confirmation of Chlamydia pneumoniae in cell culture. J Clin Microbiol 32:1406–1407

    Article  CAS  Google Scholar 

  30. Noguchi S, Yatera K, Kawanami T et al (2017) Frequency of detection of Chlamydophila pneumoniae using bronchoalveolar lavage fluid in patients with community-onset pneumonia. Respir Investig 55:357–364

    Article  Google Scholar 

  31. Saikku P (1998) Diagnosis of Chlamydia pneumoniae. Clin Microbiol Infect 4(Suppl 4):S7–S13

    PubMed  Google Scholar 

  32. Schito GC, Marchese A, Pesce A, et al. (1999) Infezioni delle alte vie respiratorie, razionale microbiologico dell’approccio terapeutico. GIMMOC Vol. III: N.3.

  33. She RC, Thurber A, Hymas WC et al (2010) Limited utility of culture for Mycoplasma pneumoniae and Chlamydophila pneumoniae for diagnosis of respiratory tract infections. J Clin Microbiol 48:3380–3382

    Article  Google Scholar 

  34. Signorelli SS, Stivala A, Di Pino L et al (2006) Chronic peripheral arteriopathy is associated with seropositivity to Chlamydia pneumoniae. J Chemother 18:103–106

    Article  CAS  Google Scholar 

  35. Sillis M, White P, Caul EO et al (1992) The differentiation of Chlamydia species by antigen detection in sputum specimens from patients with community-acquired acute respiratory infections. J Infect 25(Suppl 1):77–86

    Article  Google Scholar 

  36. Srinivasan R, Karaoz U, Volegova M et al (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE 10:e0117617

    Article  Google Scholar 

  37. Tagini F, Greub G (2018) Chlamydial infections : epidemiology, pathogenesis, diagnosis and treatments. Rev Med Suisse 14:1620–1625

    PubMed  Google Scholar 

  38. Verkooyen RP, Willemse D, Hiep-van Casteren SC et al (1998) Evaluation of PCR, culture, and serology for diagnosis of Chlamydia pneumoniae respiratory infections. J Clin Microbiol 36:2301–2307

    Article  CAS  Google Scholar 

  39. Wang SP, Grayston JT (1991) Chlamydia pneumoniae elementary body antigenic reactivity with fluorescent antibody is destroyed by methanol. J Clin Microbiol 29:1539–1541

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank the Scientific Bureau of the University of Catania for language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Genovese.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stivala, A., Genovese, C., Bonaccorso, C. et al. Comparison of Cell Culture with Three Conventional Polymerase Chain Reactions for Detecting Chlamydophila pneumoniae in Adult’s Pharyngotonsillitis. Curr Microbiol 77, 2841–2846 (2020). https://doi.org/10.1007/s00284-020-02106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02106-z

Navigation