Skip to main content

Advertisement

Log in

Chondrokalzinose durch Kalziumpyrophosphat-Dihydrat-Ablagerung (CPPD)

Vom radiologischen Zufallsbefund zur CPPD-Kristallarthritis

Chondrocalcinosis due to calcium pyrophosphate deposition (CPPD)

From incidental radiographic findings to CPPD crystal arthritis

  • CME Zertifizierte Fortbildung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Kommen zu den typischen degenerativen, belastungsabhängigen Gelenkbeschwerden im höheren Lebensalter akute Arthritiden, sind diese häufig kristallinduziert. Durch die Kristalle kommt es über die Aktivierung des Immunsystems zum Auftreten von akuten Entzündungen. Neben der Gicht kommt vor allem die Kalziumpyrophosphat-Dihydrat (CPPD-)Ablagerungskrankheit in Betracht. Diagnostisch wegweisend sind bildgebende Verfahren, z. B. zeigen sich früh spezifische Veränderungen des Knorpels mittels Gelenksonographie, später sind CPPD-Kristalle als Knorpelverkalkungen (Chondrokalzinose) in Röntgenaufnahmen sichtbar. Beweisend für die Diagnose der Kristallarthropathien ist der mikroskopische Nachweis der entsprechenden Kristalle in der Synovialflüssigkeit, der den Ausschluss der septischen Arthritis ergänzt. Im Gegensatz zur Arthritis urica (Gicht), die durch die medikamentöse Harnsäuresenkung gut behandelbar ist, existieren für die CPPD-Krankheit bisher keine kausalen Therapieansätze. Da die Kalziumpyrophosphat-Ablagerung sekundär bei metabolischen Erkrankungen, z. B. bei Hyperparathyreoidismus oder Hämochromatose, auftreten kann, erscheint es aber wichtig, nach solchen Ursachen zu fahnden. Im Folgenden sollen aktuelle, praxisrelevante Erkenntnisse zu Pathogenese, Diagnostik und Therapie der CPPD-Erkrankung dargestellt werden.

Abstract

If acute arthritis occurs in the elderly in addition to typical degenerative, load-related joint complaints, this is often induced by crystal deposition. The crystals lead to activation of the immune system resulting in acute inflammation. In addition to gout, calcium pyrophosphate deposition (CPPD) disease in particular must also be taken into consideration. Diagnostically important are imaging techniques, e.g. early specific alterations of cartilage can be shown by joint sonography and later calcium pyrophosphate crystals can be detected as cartilage calcification (chondrocalcinosis) by radiography. Important for the diagnosis of crystal arthropathy is usually the microscopic detection of specific crystals in the synovial fluid and is supported by exclusion of septic arthritis by arthrocentesis. In contrast to gout, which can be well controlled by the pharmaceutical lowering of uric acid levels, there is no causal therapy for CPPD disease so far. As CPPD may occur as a secondary effect in metabolic disorders, such as hyperparathyroidism or hemochromatosis, it seems to be important to search for the underlying disease. The following article presents the current knowledge on clinically relevant aspects of the pathogenesis, diagnosis and therapy of CPPD disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Hollander JL, Jessar RA, McCarthy DJ (1961) Synovianalysis: an aid in arthritis diagnosis. Bull Rheum Dis 12:263–264

    CAS  PubMed  Google Scholar 

  2. Kohn NN, Hughes RE, McCarty DJ Jr, Faires JS (1962) The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the „pseudogout syndrome“. II. Identification of crystals. Ann Intern Med 56:738–745

    Article  CAS  PubMed  Google Scholar 

  3. Zhang W, Doherty M, Pascual E et al (2011) EULAR recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis 70:563–570

    Article  CAS  PubMed  Google Scholar 

  4. Salaffi F, De Angelis R, Grassi W et al (2005) Prevalence of musculoskeletal conditions in an Italian population sample: results of a regional community-based study. I. The MAPPING study. Clin Exp Rheumatol 23:819–828

    CAS  PubMed  Google Scholar 

  5. Rosenthal AK (2011) Crystals, inflammation and osteoarthritis. Curr Opin Rheumatol 23:170–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Abhishek A, Doherty S, Maciewicz R et al (2013) Evidence of a systemic predisposition to chondrocalcinosis and association between chondrocalcinosis and osteoarthritis at distant joints: a cross-sectional study. Arthritis Care Res (Hoboken) 65:1052–1058

    Article  Google Scholar 

  7. Jones AC, Chuck AJ, Arie EA et al (1992) Diseases associated with calcium pyrophosphate deposition disease. Semin Arthritis Rheum 22:188–202

    Article  CAS  PubMed  Google Scholar 

  8. Manger B (2012) Gout and other crystal-induced arthritides. Dtsch Med Wochenschr 137(31–32):1579–1581

  9. Derfus B, Kranendonk S, Camacho N et al (1998) Human osteoarthritic cartilage matrix vesicle generate both calcium pyrophosphate dehydrate and apatite in vitro. Calcif Tissue Int 62:258–262

    Article  Google Scholar 

  10. Costello JC, Ryan LM (2004) Modulation of chondrocyte production of extracellular inorganic pyrophosphate. Curr Opin Rheumatol 16:268–272

    Article  CAS  PubMed  Google Scholar 

  11. Fuerst M, Bertrand J, Lammers L et al (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60:2694–2703

    Article  CAS  PubMed  Google Scholar 

  12. Tsui FW (2012) Genetics and mechanisms of crystal deposition in calcium pyrophosphate deposition disease. Curr Rheumatol Rep 14:155–160

    Article  CAS  PubMed  Google Scholar 

  13. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289(5477):265–270

    Article  CAS  PubMed  Google Scholar 

  14. Zustin J, Fürst M, Sauter G, Rüther W (2008) Crystal-induced arthropathies. Z Rheumatol 67:47–50

    Article  CAS  PubMed  Google Scholar 

  15. Beck C, Morbach H, Richl P et al (2009) How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases? Rheumatol Int 29:229–238

    Article  CAS  PubMed  Google Scholar 

  16. Husar-Memmer E, Stadlmayr A, Datz C, Zwerina J (2014) HFE-related hemochromatosis: an update for the rheumatologist. Curr Rheumatol Rep 16:393

    Article  PubMed  Google Scholar 

  17. Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  CAS  PubMed  Google Scholar 

  18. Pétrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622

    Article  PubMed  Google Scholar 

  19. Dalbeth N, Haskard DO (2005) Inflammation and tissue damage in crystal deposition diseases. Curr Opin Rheumatol 17:314–318

    Article  PubMed  Google Scholar 

  20. Announ N, Guerne PA (2007) Diagnosis and treatment of calcium pyrophosphate crystal-induced arthropathy. Z Rheumatol 66:573–578

    Article  CAS  PubMed  Google Scholar 

  21. Pego-Reigosa JM, Rodriguez-Rodriguez M, Hurtado-Hernandez Z et al (2005) Calcium pyrophosphate deposition disease mimicking polymyalgia rheumatica: a prospective followup study of predictive factors for this condition in patients presenting with polymyalgia symptoms. Arthritis Rheum 53:931–938

    Article  CAS  PubMed  Google Scholar 

  22. Godfrin-Valnet M, Godfrin G, Godard J et al (2013) Eighteen cases of crowned dens syndrome: presentation and diagnosis. Neurochirurgie 59:115–120

    Article  CAS  PubMed  Google Scholar 

  23. Bruges-Armas J, Couto AR, Timms A et al (2006) Ectopic calcification among families in the Azores: clinical and radiologic manifestations in families with diffuse idiopathic skeletal hyperostosis and chondrocalcinosis. Arthritis Rheum 54:1340–1349

    Article  PubMed  Google Scholar 

  24. Filippou G, Filippucci E, Tardella M et al (2013) Extent and distribution of CPP deposits in patients affected by calcium pyrophosphate dihydrate deposition disease: an ultrasonographic study. Ann Rheum Dis 72:1836–1839

    Article  PubMed  Google Scholar 

  25. Pascual E, Sivera F, Andrés M (2011) Synovial fluid analysis for crystals. Curr Opin Rheumatol 23:161–169

    PubMed  Google Scholar 

  26. Tausche AK, Gehrisch S, Panzner I et al (2013) A 3-day delay in synovial fluid crystal identification did not hinder the reliable detection of monosodium urate and calcium pyrophosphate crystals. J Clin Rheumatol 19:241–245

    Article  PubMed  Google Scholar 

  27. Zhang W, Doherty M, Pascual E et al (2011) EULAR recommendations for calcium pyrophosphate deposition. Part II: management. Ann Rheum Dis 70:571–575

    Article  CAS  PubMed  Google Scholar 

  28. Aran S, Malekzadeh S, Seifirad S (2011) A double-blind randomized controlled trial appraising the symptom-modifying effects of colchicine on osteoarthritis of the knee. Clin Exp Rheumatol 29:513–518

    CAS  PubMed  Google Scholar 

  29. Andres M, Sivera F, Pascual E (2012) Methotrexate is an option for patients with refractory calcium pyrophosphate crystal arthritis. J Clin Rheumatol 18:234–236

    Article  PubMed  Google Scholar 

  30. Ottaviani S, Brunier L, Sibilia J et al (2013) Efficacy of anakinra in calcium pyrophosphate crystal-induced arthritis: a report of 16 cases and review of the literature. Joint Bone Spine 80:178–182

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A.-K. Tausche ist als Referentin für die Firma Berlin Chemie Menarini tätig und erhielt Beraterhonorare von Sobi, Novartis, Savient Pharmaceuticals Inc. und Ardea Bioscience Inc. M. Aringer war als Referent für die Firmen Berlin Chemie Menarini und Novartis tätig und erhielt Beraterhonorare von beiden Firmen. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-K. Tausche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tausche, AK., Aringer, M. Chondrokalzinose durch Kalziumpyrophosphat-Dihydrat-Ablagerung (CPPD). Z. Rheumatol. 73, 349–359 (2014). https://doi.org/10.1007/s00393-014-1364-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-014-1364-5

Schlüsselwörter

Keywords

Navigation