Skip to main content
Log in

Genetic associations of cardiovascular risk genes in European patients with coronary artery spasm

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Coronary artery spasm (CAS) is a frequent finding in patients presenting with angina pectoris. Although the pathogenesis of CAS is incompletely understood, previous studies suggested a genetic contribution. Our study aimed to elucidate genetic variants in a cohort of European patients with angina and unobstructed coronary arteries who underwent acetylcholine (ACh) provocation testing.

Methods

A candidate association analysis of 208 genes previously associated with cardiovascular conditions was performed using genotyped and imputed variants in patients grouped in epicardial (focal, diffuse) CAS (n = 119) and microvascular CAS (n = 87). Patients with a negative ACh test result (n = 45) served as controls.

Results

We found no association below the genome-wide significance threshold of p < 5 × 10−8, thus not confirming variants in ALDH2, NOS3, and ROCK2 previously reported in CAS patients of Asian ancestry. However, the analysis identified suggestive associations (p < 10−05) for the groups of focal epicardial CAS (CDH13) and diffuse epicardial CAS (HDAC9, EDN1). Downstream analysis of the potential EDN1 risk locus showed that CAS patients have significantly increased plasma endothelin-1 levels (ET-1) compared to controls. An EDN1 haplotype comprising rs9349379 and rs2070698 was significantly associated to ET-1 levels (p = 0.01).

Conclusions

In summary, we suggest EDN1 as potential genetic risk loci for patients with diffuse epicardial CAS, and European ancestry. Plasma ET-1 levels may serve as a potential cardiac marker.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset analyzed during the current study is available from the corresponding author upon reasonable request.

References

  1. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840. https://doi.org/10.1056/NEJMra061889

    Article  CAS  PubMed  Google Scholar 

  2. Cheng TO, Bashour T, Kelser GA et al (1973) Variant angina of prinzmetal with normal coronary arteriograms: a variant of the variant. Circulation 47:476–485. https://doi.org/10.1161/01.CIR.47.3.476

    Article  CAS  PubMed  Google Scholar 

  3. Crea F, Camici PG, Bairey Merz CN (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35:1101–1111. https://doi.org/10.1093/eurheartj/eht513

    Article  PubMed  Google Scholar 

  4. Ford TJ, Stanley B, Good R et al (2018) Stratified medical therapy using invasive coronary function testing in angina. J Am Coll Cardiol 72:2841–2855. https://doi.org/10.1016/j.jacc.2018.09.006

    Article  PubMed  Google Scholar 

  5. Ong P, Safdar B, Seitz A et al (2020) Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res 116:841–855. https://doi.org/10.1093/cvr/cvz339

    Article  CAS  PubMed  Google Scholar 

  6. Sechtem U, Brown D, Godo S et al (2020) Coronary microvascular dysfunction in stable ischaemic heart disease (non-obstructive coronary artery disease and obstructive coronary artery disease). Cardiovasc Res 116:771–786. https://doi.org/10.1093/cvr/cvaa005

    Article  CAS  PubMed  Google Scholar 

  7. Ford TJ, Yii E, Sidik N et al (2019) Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders. Circ Cardiovasc Interv 12:e008126. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008126

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beltrame JF, Crea F, Kaski JC et al (2015) International standardization of diagnostic criteria for vasospastic angina. Eur Heart J 2565–2568. https://doi.org/10.1093/eurheartj/ehv351

  9. Ong P, Camici PG, Beltrame JF et al (2018) International standardization of diagnostic criteria for microvascular angina. Int J Cardiol 250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068

    Article  PubMed  Google Scholar 

  10. Beller GA (1989) Calcium antagonists in the treatment of Prinzmetal’s angina and unstable angina pectoris. Circulation 80:IV78-87

    CAS  PubMed  Google Scholar 

  11. Seitz A, Morár N, Pirozzolo G et al (2020) Prognostic implications of coronary artery stenosis and coronary spasm in patients with stable angina: 5-year follow-up of the Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries (ACOVA) study. Coron Artery Dis 31:530–537. https://doi.org/10.1097/MCA.0000000000000876

    Article  PubMed  Google Scholar 

  12. Erdmann J, Kessler T, Munoz Venegas L, Schunkert H (2018) A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. https://doi.org/10.1093/cvr/cvy084

    Article  PubMed  Google Scholar 

  13. Mizuno Y, Harada E, Morita S et al (2015) East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 131:1665–1673. https://doi.org/10.1161/CIRCULATIONAHA.114.013120

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi F, Yokota M, Yamamoto K et al (2012) Genome-wide association study of coronary artery disease in the Japanese. Eur J Hum Genet 20:333–340. https://doi.org/10.1038/ejhg.2011.184

    Article  CAS  PubMed  Google Scholar 

  15. Yoshimura M, Yasue H, Nakayama M et al (1998) A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet 103:65–69

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama M, Yasue H, Yoshimura M et al (1999) T −786 →C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99:2864–2870. https://doi.org/10.1161/01.CIR.99.22.2864

    Article  CAS  PubMed  Google Scholar 

  17. Kaneda H, Taguchi J, Kuwada Y et al (2006) Coronary artery spasm and the polymorphisms of the endothelial nitric oxide synthase gene. Circ J 70:409–413. https://doi.org/10.1253/circj.70.409

    Article  CAS  PubMed  Google Scholar 

  18. Yoo S-Y, Kim J, Cheong S et al (2012) Rho-associated kinase 2 polymorphism in patients with vasospastic angina. Korean Circ J 42:406–413. https://doi.org/10.4070/kcj.2012.42.6.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong P, Pirozzolo G, Athanasiadis A, Sechtem U (2018) Epicardial coronary spasm in women with angina pectoris and unobstructed coronary arteries is linked with a positive family history: an observational study. Clin Ther 40:1584–1590. https://doi.org/10.1016/j.clinthera.2018.07.015

    Article  PubMed  Google Scholar 

  20. Kessler T, Vilne B, Schunkert H (2016) The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 8:688–701. https://doi.org/10.15252/emmm.201506174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ong P, Athanasiadis A, Sechtem U (2016) Intracoronary acetylcholine provocation testing for assessment of coronary vasomotor disorders. J Vis Exp 54295. https://doi.org/10.3791/54295

  22. Gomes AM, Winter S, Klein K et al (2009) Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 10:579–599. https://doi.org/10.2217/pgs.09.7

    Article  CAS  PubMed  Google Scholar 

  23. Das S, Forer L, Schönherr S et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48:1284–1287. https://doi.org/10.1038/ng.3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511. https://doi.org/10.1038/nrg2796

    Article  CAS  PubMed  Google Scholar 

  26. Tremmel R (2021) ggfastman, fast manhattenplots using ggplot2, https://doi.org/10.5281/zenodo.10656742

  27. Lamparter D, Marbach D, Rueedi R et al (2016) Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLOS Comput Biol 12:e1004714. https://doi.org/10.1371/journal.pcbi.1004714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ionita-Laza I, Lee S, Makarov V et al (2013) Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92:841–853. https://doi.org/10.1016/j.ajhg.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sinnwell J, Schaid D haplo.stats: statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous. R package version 1.7.9. https://CRAN.R-project.org/package=haplo.stats

  30. Ong P, Athanasiadis A, Borgulya G et al (2014) Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129:1723–1730. https://doi.org/10.1161/CIRCULATIONAHA.113.004096

    Article  CAS  PubMed  Google Scholar 

  31. Kessler T, Wobst J, Wolf B et al (2017) Functional characterization of the GUCY1A3 coronary artery disease risk locus. Circulation 136:476–489. https://doi.org/10.1161/CIRCULATIONAHA.116.024152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kessler T, Wolf B, Eriksson N et al (2019) Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention. Cardiovasc Res 115:1512–1518. https://doi.org/10.1093/cvr/cvz015

    Article  CAS  PubMed  Google Scholar 

  33. Hendrix P, Foreman PM, Harrigan MR et al (2017) The role of endothelial nitric oxide synthase −786 T/C polymorphism in cardiac instability following aneurysmal subarachnoid hemorrhage. Nitric Oxide 71:52–56. https://doi.org/10.1016/j.niox.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  34. Martínez Pereyra V, Hubert A, Seitz A et al (2020) Epicardial and microvascular coronary spasm in the same patient?—acetylcholine testing pointing towards a common pathophysiological background. Coron Artery Dis 31:398–399. https://doi.org/10.1097/MCA.0000000000000829

    Article  PubMed  Google Scholar 

  35. Tanigawa Y, Qian J, Venkataraman G et al (2022) Significant sparse polygenic risk scores across 813 traits in UK Biobank. PLOS Genet 18:e1010105. https://doi.org/10.1371/journal.pgen.1010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ford TJ, Corcoran D, Padmanabhan S et al (2020) Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J 41:3239–3252. https://doi.org/10.1093/eurheartj/ehz915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta RM, Hadaya J, Trehan A et al (2017) A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170:522-533.e15. https://doi.org/10.1016/j.cell.2017.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ota M, Nagafuchi Y, Hatano H et al (2021) Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184:3006-3021.e17. https://doi.org/10.1016/j.cell.2021.03.056

    Article  CAS  PubMed  Google Scholar 

  39. Adlam D, Olson TM, Combaret N et al (2019) Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection. J Am Coll Cardiol 73:58–66. https://doi.org/10.1016/j.jacc.2018.09.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naya M, Aikawa T, Manabe O et al (2021) Elevated serum endothelin-1 is an independent predictor of coronary microvascular dysfunction in non-obstructive territories in patients with coronary artery disease. Heart Vessels 36:917–923. https://doi.org/10.1007/s00380-020-01767-x

    Article  PubMed  Google Scholar 

  41. Abraham GR, Morrow AJ, Oliveira J et al (2022) Mechanistic study of the effect of endothelin SNPs in microvascular angina - protocol of the PRIZE endothelin sub-study. Int J Cardiol Heart Vasc 39:100980. https://doi.org/10.1016/j.ijcha.2022.100980

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Der Harst P, Verweij N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 122:433–443. https://doi.org/10.1161/CIRCRESAHA.117.312086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seitz A, Gardezy J, Pirozzolo G et al (2020) Long-term follow-up in patients with stable angina and unobstructed coronary arteries undergoing intracoronary acetylcholine testing. JACC Cardiovasc Interv 13:1865–1876. https://doi.org/10.1016/j.jcin.2020.05.009

    Article  PubMed  Google Scholar 

  44. Jespersen L, Abildstrøm SZ, Hvelplund A, Prescott E (2013) Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clin Res Cardiol 102:571–581. https://doi.org/10.1007/s00392-013-0568-z

    Article  PubMed  Google Scholar 

  45. Sahebkar A, Kotani K, Serban C et al (2015) Statin therapy reduces plasma endothelin-1 concentrations: a meta-analysis of 15 randomized controlled trials. Atherosclerosis 241:433–442. https://doi.org/10.1016/j.atherosclerosis.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  46. Kabaklić A, Fras Z (2017) Moderate-dose atorvastatin improves arterial endothelial function in patients with angina pectoris and normal coronary angiogram: a pilot study. Arch Med Sci 4:827–836. https://doi.org/10.5114/aoms.2017.68238

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant from the German Heart Foundation (FF19/290), the Berthold-Leibinger-Foundation, Ditzingen, Germany, and the Robert Bosch Stiftung, Stuttgart, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ong.

Ethics declarations

Ethical approval

Approval was obtained from the ethics committee at the Landesärztekammer Baden-Württemberg, Stuttgart, Germany. The procedures used in this study adhere to the tenets of the Declaration of Helsinki. All study participants provided written informed consent.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremmel, R., Martínez Pereyra, V., Broders, I. et al. Genetic associations of cardiovascular risk genes in European patients with coronary artery spasm. Clin Res Cardiol (2024). https://doi.org/10.1007/s00392-024-02446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00392-024-02446-x

Keywords

Navigation