Quach K, Lvtvyn L, Baigent C, Bueti J, Garg AX, Hawley C et al (2016) The safety and efficacy of mineralocorticoid receptor antagonists in patients who require dialysis: a systematic review and meta-analysis. Am J Kidney Dis 68:591–598. https://doi.org/10.1053/j.ajkd.2016.04.011
CAS
Article
PubMed
Google Scholar
Chen ZW, Wu CK, Yang YH, Huang JW, Wu VC, Lee JK et al (2019) Efficacy of antiplatelet agent usage for primary and secondary prevention in dialysis patients: a nationwide data survey and propensity analysis. Cardiovasc Drugs Ther 33:471–479. https://doi.org/10.1007/s10557-019-06882-0
CAS
Article
PubMed
Google Scholar
Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753. https://doi.org/10.1038/nri3523
CAS
Article
PubMed
Google Scholar
Wang X, Shapiro JI (2019) Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat Rev Nephrol 15:159–175. https://doi.org/10.1038/s41581-018-0101-8
Article
PubMed
Google Scholar
Chirakarnjanakorn S, Navaneethan SD, Francis GS, Tang WHW (2017) Cardiovascular impact in patients undergoing maintenance hemodialysis: clinical management considerations. Int J Cardiol 232:12–23. https://doi.org/10.1016/j.ijcard.2017.01.015
Article
PubMed
PubMed Central
Google Scholar
Zanoli L, Lentini P, Briet M, Castellino P, House AA, London GM et al (2019) Arterial stiffness in the heart disease of CKD. J Am Soc Nephrol 30:918–928. https://doi.org/10.1681/asn.2019020117
CAS
Article
PubMed
PubMed Central
Google Scholar
Zannad F, Rossignol P (2018) Cardiorenal syndrome revisited. Circulation 138:929–944. https://doi.org/10.1161/CIRCULATIONAHA.117.028814
Article
PubMed
Google Scholar
de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J et al (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (HFA) of the European society of cardiology. Eur J Heart Fail 21:272–285. https://doi.org/10.1002/ejhf.1406
Article
PubMed
Google Scholar
Rossignol P, Ferreira JP, Zannad F (2018) Fibrosis mechanistic phenotyping and antifibrotic response determination with biomarkers in heart failure: one single biomarker may not fit all settings. Eur J Heart Fail 20:1300–1302. https://doi.org/10.1002/ejhf.1214
Article
PubMed
Google Scholar
Schiffer E, Liabeuf S, Lacroix C, Temmar M, Renard C, Monsarrat B et al (2011) Markers of vascular disease in plasma from patients with chronic kidney disease identified by proteomic analysis. J Hypertens 29:783–790. https://doi.org/10.1097/HJH.0b013e3283441129
CAS
Article
PubMed
Google Scholar
Bai Y, Zhang J, Xu J, Cui L, Zhang H, Zhang S (2015) Alteration of type I collagen in the radial artery of patients with end-stage renal disease. Am J Med Sci 349:292–297. https://doi.org/10.1097/MAJ.0000000000000408
Article
PubMed
Google Scholar
François H, Chatziantoniou C (2018) Renal fibrosis: recent translational aspects. Matrix Biol 68–69:318–332. https://doi.org/10.1016/j.matbio.2017.12.013
CAS
Article
PubMed
Google Scholar
Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC et al (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive. Circulation 101:1729–1735. https://doi.org/10.1161/01.cir.101.14.1729
CAS
Article
PubMed
Google Scholar
López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G et al (2015) Circulating biomarkers of myocardial fibrosis. J Am Coll Cardiol 65:2449–2456. https://doi.org/10.1016/j.jacc.2015.04.026
CAS
Article
PubMed
Google Scholar
Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298. https://doi.org/10.2353/ajpath.2008.070726
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Seaghdha CM, Hwang SJ, Ho JE, Vasan RS, Levy D, Fox CS (2013) Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol 24:1470–1477. https://doi.org/10.1681/ASN.2012090909
CAS
Article
PubMed
PubMed Central
Google Scholar
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 128:e240-327. https://doi.org/10.1161/CIR.0b013e31829e8776
Article
PubMed
Google Scholar
Savoj J, Becerra B, Kim JK, Fusaro M, Gallieni M, Lombardo D et al (2019) Utility of cardiac biomarkers in the setting of kidney disease. Nephron 141:227–235. https://doi.org/10.1159/000495946
CAS
Article
PubMed
Google Scholar
Drechsler C, Delgado G, Wanner C, Blouin K, Pilz S, Tomaschitz A et al (2015) Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D studies. J Am Soc Nephrol 26:2213–2221. https://doi.org/10.1681/ASN.2014010093
CAS
Article
PubMed
PubMed Central
Google Scholar
Obokata M, Sunaga H, Ishida H, Ito K, Ogawa T, Ando Y et al (2016) Independent and incremental prognostic value of novel cardiac biomarkers in chronic hemodialysis patients. Am Heart J 179:29–41. https://doi.org/10.1016/j.ahj.2016.05.018
CAS
Article
PubMed
Google Scholar
Hogas S, Schiller A, Voroneanu L, Constantinescu D, Timar R, Cianga P et al (2016) Predictive value for galectin 3 and cardiotrophin 1 in hemodialysis patients. Angiology 67:854–859. https://doi.org/10.1177/0003319715623397
CAS
Article
PubMed
Google Scholar
Zhang T, Cao S, Yang H, Li J (2019) Prognostic impact of galectin-3 in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 51:1005–1011. https://doi.org/10.1007/s11255-019-02123-3
Article
PubMed
Google Scholar
Holme I, Fellström BC, Jardin AG, Schmieder RE, Zannad F, Holdaas H (2012) Prognostic model for total mortality in patients with haemodialysis from the assessments of survival and cardiovascular events (AURORA) study. J Intern Med 271:463–471. https://doi.org/10.1111/j.1365-2796.2011.02435.x
CAS
Article
PubMed
Google Scholar
Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J et al (2009) Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 360:1395–1407. https://doi.org/10.1056/NEJMoa0810177
CAS
Article
PubMed
Google Scholar
Fellström B, Holdaas H, Jardine AG, Rose H, Schmieder R, Wilpshaar W et al (2007) Effect of rosuvastatin on outcomes in chronic haemodialysis patients: baseline data from the AURORA study. Kidney Blood Press Res 30:314–322. https://doi.org/10.1159/000106803
CAS
Article
PubMed
PubMed Central
Google Scholar
Fellström B, Zannad F, Schmieder R, Holdaas H, Jardine AG, Rose H et al (2005) Effect of rosuvastatin on outcomes in chronic haemodialysis patients—design and rationale of the AURORA study. Curr Control Trials Cardiovasc Med. https://doi.org/10.1186/1468-6708-6-9
Article
PubMed
PubMed Central
Google Scholar
Schiffrin EL, Lipman ML, Mann JFE (2007) Chronic kidney disease effects on the cardiovascular system. Circulation 116:85–97. https://doi.org/10.1161/CIRCULATIONAHA.106.678342
Article
PubMed
Google Scholar
Cobo G, Lindholm B, Stenvinkel P (2018) Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant iii33:35–40. https://doi.org/10.1093/ndt/gfy175
CAS
Article
Google Scholar
Boutouyrie P, Fliser D, Goldsmith D, Covic A, Wiecek A, Ortiz A et al (2014) Assessment of arterial stiffness for clinical and epidemiological studies: methodological considerations for validation and entry into the European renal and cardiovascular medicine registry. Nephrol Dial Transplant 29:232–239. https://doi.org/10.1093/ndt/gft309
Article
PubMed
Google Scholar
Querejeta R, López B, González A, Sánchez E, Larman M, Martínez Ubago JL et al (2004) Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110:1263–1268. https://doi.org/10.1161/01.CIR.0000140973.60992.9A
CAS
Article
PubMed
Google Scholar
Lijnen PJ, Maharani T, Finahari N, Prihadi JS (2012) Serum collagen markers and heart failure. Cardiovasc Hematol Disord Targets 12:51–55. https://doi.org/10.2174/187152912801823147
CAS
Article
Google Scholar
Löfsjögård J, Kahan T, Díez J, López B, González A, Ravassa S et al (2017) Usefulness of collagen carboxy-terminal propeptide and telopeptide to predict disturbances of long-term mortality in patients ≥ 60 years with heart failure and reduced ejection fraction. Am J Cardiol 119:2042–2048. https://doi.org/10.1016/j.amjcard.2017.03.036
CAS
Article
PubMed
Google Scholar
Coen G, Mazzaferro S, Ballanti P, Bonucci E, Bondatti F, Manni M et al (1992) Procollagen type I C-terminal extension peptide in predialysis chronic renal failure. Am J Nephrol 12:247–251. https://doi.org/10.1159/000168453
Article
Google Scholar
Su CT, Liu YW, Lin JW, Chen SI, Yang CS, Chen JH et al (2012) Increased procollagen type i C-terminal peptide levels indicate diastolic dysfunction in end-stage renal disease patients undergoing maintenance dialysis therapy. J Am Soc Echocardiogr 25:895–901. https://doi.org/10.1016/j.echo.2012.04.025
Article
PubMed
Google Scholar
Martínez-Martínez E, Calvier L, Fernández-Celis A, Rousseau E, Jurado-López R, Rossoni LV et al (2015) Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 66:767–775. https://doi.org/10.1161/HYPERTENSIONAHA.115.05876
CAS
Article
PubMed
Google Scholar
Zhong X, Qian X, Chen G, Song X (2019) The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 46:197–203. https://doi.org/10.1111/1440-1681.13048
CAS
Article
PubMed
Google Scholar
Ko W-C, Choy C-S, Lin W-N, Chang S-W, Liou J-C, Tung T-H et al (2018) Galectin-3 interacts with vascular cell adhesion molecule-1 to increase cardiovascular mortality in hemodialysis patients. J Clin Med 7:300. https://doi.org/10.3390/jcm7100300
CAS
Article
PubMed Central
Google Scholar
Rabinovich GA, Liu FT, Hirashima M, Anderson A (2007) An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 66:143–158. https://doi.org/10.1111/j.1365-3083.2007.01986.x
CAS
Article
PubMed
Google Scholar
Jeon S-B, Yoon HJ, Chang CY, Koh HS, Jeon S-H, Park EJ (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK–STAT pathway. J Immunol 185:7037–7046. https://doi.org/10.4049/jimmunol.1000154
CAS
Article
PubMed
Google Scholar
Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-martinez E, De BRA et al (2013) Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 33:67–75. https://doi.org/10.1161/ATVBAHA.112.300569
CAS
Article
PubMed
Google Scholar
Vergaro G, Prud M, Fazal L, Merval R, Passino C, Emdin M et al (2016) Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension 67:606–612. https://doi.org/10.1161/HYPERTENSIONAHA.115.06161
CAS
Article
PubMed
Google Scholar
Martínez-martínez E, Brugnolaro C, Ibarrola J, Ravassa S, Buonafine M, López B et al (2019) CT-1 (cardiotrophin-1)-gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73:602–611. https://doi.org/10.1161/HYPERTENSIONAHA.118.11874
CAS
Article
PubMed
Google Scholar
Calvier L, Martinez-Martinez E, Miana M, Cachofeiro V, Rousseau E, Sádaba JR et al (2015) The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Hear Fail 3:59–67. https://doi.org/10.1016/j.jchf.2014.08.002
Article
Google Scholar
Martinez-martinez E, Calvier L, Rossignol P, Rousseau E, Fernández-Celis A, Jurado-López R et al (2016) Galectin-3 inhibition prevents adipose tissue remodelling in obesity. Int J Obes 40:1034–1038. https://doi.org/10.1038/ijo.2016.19
CAS
Article
Google Scholar
Martínez-martínez E, López-ándres N, Jurado-lópez R, Rousseau E, Bartolomé MV, Fernández-celis A et al (2015) Galectin-3 participates in cardiovascular remodeling associated with obesity. Hypertension 66:961–969. https://doi.org/10.1161/HYPERTENSIONAHA.115.06032
CAS
Article
PubMed
Google Scholar
De BRA, Van VDJ, Gansevoort RT, Kobold ACM, Van GWH, Hillege HL et al (2012) The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 272:55–64. https://doi.org/10.1111/j.1365-2796.2011.02476.x
CAS
Article
Google Scholar
Ho JE, Liu C, Lyass A, Courchesne P, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256. https://doi.org/10.1016/j.jacc.2012.04.053
CAS
Article
PubMed
PubMed Central
Google Scholar
Tarjus A, Martínez-martínez E, Amador C, Latouche C, El MS, Berger T et al (2015) Neutrophil gelatinase-associated lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension 66:158–166. https://doi.org/10.1161/HYPERTENSIONAHA.115.05431
CAS
Article
PubMed
Google Scholar
De Boer RA, Lok DJA, Jaarsma T, Van Der Meer P, Voors AA, Hillege HL et al (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68. https://doi.org/10.3109/07853890.2010.538080
CAS
Article
PubMed
Google Scholar
Lok DJA, Van Der Meer P, De La Porte PWBA, Lipsic E, Van Wijngaarden J, Hillege HL et al (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328. https://doi.org/10.1007/s00392-010-0125-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang WHW, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD et al (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol 108:385–390. https://doi.org/10.1016/j.amjcard.2011.03.056
CAS
Article
PubMed
PubMed Central
Google Scholar
Eschalier R, Rossignol P, Kearney-schwartz A, Adamopoulos C, Karatzidou K, Fay R et al (2014) Features of cardiac remodeling, associated with blood pressure and fibrosis biomarkers, are frequent in subjects with abdominal obesity. Hypertension 63:740–746. https://doi.org/10.1161/HYPERTENSIONAHA.113.02419
CAS
Article
PubMed
Google Scholar
Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ et al (2009) The association between elevated fibrosis markers and heart failure in the elderly: the cardiovascular health study. Circ Heart Fail 2:303–310. https://doi.org/10.1161/CIRCHEARTFAILURE.108.828343.The
CAS
Article
PubMed
PubMed Central
Google Scholar
Gopal DM, Kommineni M, Ayalon N, Koelbl C, Ayalon R, Andreia B et al (2012) Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 1:e000760. https://doi.org/10.1161/JAHA.112.000760
CAS
Article
PubMed
PubMed Central
Google Scholar
Sawamura T, Sasagawa I, Kubota Y, Ishigooka M, Nakada T, Adachi M et al (1998) Serum level of carboxyterminal propeptide of type I procollagen in haemodialysis patients. Int Urol Nephrol 30:99–103
CAS
Article
Google Scholar
Lin YH, Chou CH, Wu XM, Chang YY, Hung CS, Chen YH et al (2014) Aldosterone induced galectin-3 secretion in vitro and in vivo: from cells to humans. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0095254
CAS
Article
Google Scholar
Ibarrola J, Sádaba R, Garcia-Peña A, Arrieta V, Martinez-Martinez E, Alvarez V et al (2018) A role for fumarate hydratase in mediating oxidative effects of galectin-3 in human cardiac fibroblasts. Int J Cardiol 258:217–223. https://doi.org/10.1016/j.ijcard.2017.12.103
Article
PubMed
Google Scholar
Bonnin MR, Gonzalez MT, Navarro MA, Griño JM, Cmzado JM, Martinez JM (1996) Evolution of circulating C-terminal propeptide of type I procollagen in patients with chronic renal failure pre and post renal transplantation. Clin Chem Lab Med 34:897–900. https://doi.org/10.1515/cclm.1996.34.11.897
CAS
Article
Google Scholar
Pellicori P, Ferreira JP, Mariottoni B, Brunner-La Rocca HP, Ahmed FZ, Verdonschot J et al (2020) Effects of spironolactone on serum markers of fibrosis in people at high risk of developing heart failure: rationale, design and baseline characteristics of a proof-of-concept, randomised, precision-medicine, prevention trial. The heart omics in aging (HOMAGE). Eur J Heart Fail. https://doi.org/10.1002/ejhf.1716
Article
PubMed
Google Scholar
Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P et al (2012) Galectin-3 predicts response to statin therapy in the controlled rosuvastatin multinational trial in heart failure (CORONA). Eur Heart J 33:2290–2296. https://doi.org/10.1093/eurheartj/ehs077
CAS
Article
PubMed
Google Scholar
Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P et al (2012) The predictive value of galectin-3 for mortality and cardiovascular events in the controlled rosuvastatin multinational trial in heart failure (CORONA). Am Heart J 164:878–883. https://doi.org/10.1016/j.ahj.2012.08.021
CAS
Article
PubMed
Google Scholar
Rossignol P, Frimat L, Zannad F (2019) The safety of mineralocorticoid antagonists in maintenance hemodialysis patients: two steps forward. Kidney Int 95:747–749. https://doi.org/10.1016/j.kint.2018.12.006
Article
PubMed
Google Scholar
Untersteller K, Girerd N, Duarte K, Rogacev KS, Seiler-Mussler S, Fliser D et al (2016) NT-proBNP and echocardiographic parameters for prediction of cardiovascular outcomes in patients with CKD stages G2–G4. Clin J Am Soc Nephrol 11:1978–1988. https://doi.org/10.2215/CJN.01660216
Article
PubMed
PubMed Central
Google Scholar
Tuegel C, Katz R, Alam M, Bhat Z, Bellovich K, de Boer I et al (2018) GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD. Am J Kidney Dis 72:519–528. https://doi.org/10.1053/j.ajkd.2018.03.025
CAS
Article
PubMed
PubMed Central
Google Scholar