Skip to main content

Advertisement

Log in

Biological variation of extracellular matrix biomarkers in patients with stable chronic heart failure

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Extracellular matrix (ECM) biomarkers such as matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are pathophysiological key, prognostic marker and therapeutic target in chronic heart failure (HF). Serial measurements of MMPs and TIMPs may be useful for guidance of these applications. However, interpretation of time-dependent changes requires knowledge about the biological variation of ECM biomarkers.

Methods

We performed measurements of MMP-2, MMP-9, TIMP-1, and TIMP-4 in 50 patients with chronic HF who met rigid criteria for clinical stability at 3-h, 6-h, 1-week and 2-week time intervals. In addition, clinical and haemodynamic assessment was performed at baseline, at 1- and 2-week intervals. Haemodynamic variables were measured using inert gas rebreathing and impedance cardiography. Heart rhythm was monitored with external ECG event recorders throughout the complete study. Reference change values (RCVs) and minimal important differences (MIDs) were determined for MMP-2, MMP-9, TIMP-1, and TIMP-4.

Results

Clinical and haemodynamic variables were stable over time. Depending on the time-interval, RCVs ranged between 4.9 and 11.7% for MMP-2, 26.4 and 56.7% for MMP-9, 10.8 and 30.7% for TIMP-1, and 16.0 and 47.4% for TIMP-4, respectively. The MIDs varied between 43.38 and 65.22 ng/ml for MMP-2, 28.71 and 40.96 ng/ml for MMP-9, 52.32 and 156.07 ng/ml for TIMP-1, and 293.92 and 798.04 pg/ml for TIMP-4, respectively.

Conclusion

The biological variation of ECM biomarkers differs with respect to individual biomarkers and time intervals. MMP-2 may be most suitable for serial biomarker measurements, as the biological variation is low irrespective of the time interval between measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46(2):214–224

    Article  CAS  PubMed  Google Scholar 

  2. Mukherjee R, Herron AR, Lowry AS, Stroud RE, Stroud MR, Wharton JM, Ikonomidis JS, Crumbley AJ 3rd, Spinale FG, Gold MR (2006) Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol 97(4):532–537. doi:10.1016/j.amjcard.2005.08.073

    Article  CAS  PubMed  Google Scholar 

  3. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105(21):2512–2517

    Article  CAS  PubMed  Google Scholar 

  4. Izawa H, Murohara T, Nagata K, Isobe S, Asano H, Amano T, Ichihara S, Kato T, Ohshima S, Murase Y, Iino S, Obata K, Noda A, Okumura K, Yokota M (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112(19):2940–2945. doi:10.1161/circulationaha.105.571653

    CAS  PubMed  Google Scholar 

  5. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, Gillijns H, Herijgers P, Flameng W, Carmeliet P, Van de Werf F, Pinto YM, Janssens S (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112(8):1136–1144. doi:10.1161/CIRCULATIONAHA.104.516963

    Article  CAS  PubMed  Google Scholar 

  6. Manhenke C, Ueland T, Jugdutt BI, Godang K, Aukrust P, Dickstein K, Orn S (2014) The relationship between markers of extracellular cardiac matrix turnover: infarct healing and left ventricular remodelling following primary PCI in patients with first-time STEMI. Eur Heart J 35(6):395–402. doi:10.1093/eurheartj/eht482

    Article  CAS  PubMed  Google Scholar 

  7. Yamazaki T, Lee JD, Shimizu H, Uzui H, Ueda T (2004) Circulating matrix metalloproteinase-2 is elevated in patients with congestive heart failure. Eur J Heart Fail 6(1):41–45. doi:10.1016/j.ejheart.2003.05.002

    Article  CAS  PubMed  Google Scholar 

  8. George J, Patal S, Wexler D, Roth A, Sheps D, Keren G (2005) Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 150(3):484–487. doi:10.1016/j.ahj.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  9. Radauceanu A, Ducki C, Virion JM, Rossignol P, Mallat Z, McMurray J, Van Veldhuisen DJ, Tavazzi L, Mann DL, Capiaumont-Vin J, Li M, Hanriot D, Zannad F (2008) Extracellular matrix turnover and inflammatory markers independently predict functional status and outcome in chronic heart failure. J Card Fail 14(6):467–474. doi:10.1016/j.cardfail.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  10. Zile MR, Desantis SM, Baicu CF, Stroud RE, Thompson SB, McClure CD, Mehurg SM, Spinale FG (2011) Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 4(3):246–256. doi:10.1161/CIRCHEARTFAILURE.110.958199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson EM, Gunasinghe HR, Coker ML, Sprunger P, Lee-Jackson D, Bozkurt B, Deswal A, Mann DL, Spinale FG (2002) Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Card Fail 8(6):390–398. doi:10.1054/jcaf.2002.129659

    Article  CAS  PubMed  Google Scholar 

  12. Deardorff R, Spinale FG (2009) Cytokines and matrix metalloproteinases as potential biomarkers in chronic heart failure. Biomark Med 3(5):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu CP, Yeh JL, Wu BN, Chai CY, Chen IJ, Lai WT (2011) KMUP-3 attenuates ventricular remodelling after myocardial infarction through eNOS enhancement and restoration of MMP-9/TIMP-1 balance. Br J Pharmacol 162(1):126–135. doi:10.1111/j.1476-5381.2010.01024.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G, Martos R, Baugh JA, Ledwidge MT, McDonald KM (2011) Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail 13(10):1087–1095. doi:10.1093/eurjhf/hfr079

    Article  CAS  PubMed  Google Scholar 

  15. Plaksej R, Kosmala W, Frantz S, Herrmann S, Niemann M, Stork S, Wachter R, Angermann CE, Ertl G, Bijnens B, Weidemann F (2009) Relation of circulating markers of fibrosis and progression of left and right ventricular dysfunction in hypertensive patients with heart failure. J Hypertens 27(12):2483–2491. doi:10.1097/HJH.0b013e3283316c4d

    Article  CAS  PubMed  Google Scholar 

  16. Koskivirta I, Rahkonen O, Mayranpaa M, Pakkanen S, Husheem M, Sainio A, Hakovirta H, Laine J, Jokinen E, Vuorio E, Kovanen P, Jarvelainen H (2006) Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochem Cell Biol 126(3):335–342. doi:10.1007/s00418-006-0163-8

    Article  CAS  PubMed  Google Scholar 

  17. Schumann C, Lepper PM, Frank H, Schneiderbauer R, Wibmer T, Kropf C, Stoiber KM, Rudiger S, Kruska L, Krahn T, Kramer F (2010) Circulating biomarkers of tissue remodelling in pulmonary hypertension. Biomarkers 15(6):523–532. doi:10.3109/1354750X.2010.492431

    Article  CAS  PubMed  Google Scholar 

  18. Dini FL, Buralli S, Bajraktari G, Elezi S, Duranti E, Metelli MR, Carpi A, Taddei S (2010) Plasma matrix metalloproteinase-9 better predicts outcome than N-terminal protype-B natriuretic peptide in patients with systolic heart failure and a high prevalence of coronary artery disease. Biomed Pharmacother 64(5):339–342. doi:10.1016/j.biopha.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Hopps E, Caimi G (2015) Matrix metalloproteases as a pharmacological target in cardiovascular diseases. Eur Rev Med Pharmacol Sci 19(14):2583–2589

    CAS  PubMed  Google Scholar 

  20. Raleigh JM, Toldo S, Das A, Abbate A, Salloum FN (2016) Relaxin’ the heart: a novel therapeutic modality. J Cardiovasc Pharmacol Ther 21(4):353–362. doi:10.1177/1074248415617851

    Article  PubMed  Google Scholar 

  21. Weir RA, Mark PB, Petrie CJ, Clements S, Steedman T, Ford I, Ng LL, Squire IB, Wagner GS, McMurray JJ, Dargie HJ (2009) Left ventricular remodeling after acute myocardial infarction: does eplerenone have an effect? Am Heart J 157(6):1088–1096. doi:10.1016/j.ahj.2009.04.001

    Article  PubMed  Google Scholar 

  22. Ferreira JP, Santos M, Oliveira JC, Marques I, Bettencourt P, Carvalho H (2015) Influence of spironolactone on matrix metalloproteinase-2 in acute decompensated heart failure. Arq Bras Cardiol 104(4):308–314. doi:10.5935/abc.20140205

    PubMed  PubMed Central  Google Scholar 

  23. Li MJ, Huang CX, Okello E, Yanhong T, Mohamed S (2009) Treatment with spironolactone for 24 weeks decreases the level of matrix metalloproteinases and improves cardiac function in patients with chronic heart failure of ischemic etiology. Can J Cardiol 25(9):523–526

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fukui M, Goda A, Komamura K, Nakabo A, Masaki M, Yoshida C, Hirotani S, Lee-Kawabata M, Tsujino T, Mano T, Masuyama T (2016) Changes in collagen metabolism account for ventricular functional recovery following beta-blocker therapy in patients with chronic heart failure. Heart Vessels 31(2):173–182. doi:10.1007/s00380-014-0597-1

    Article  PubMed  Google Scholar 

  25. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA, Prescott MF, Shi V, Lefkowitz M, McMurray JJ, Solomon SD, Prospective Comparison of AWARBoMoHFWPEFI (2016) Plasma biomarkers reflecting profibrotic processes in heart failure with a preserved ejection fraction: data from the prospective comparison of ARNI With ARB on management of heart failure with preserved ejection fraction study. Circ Heart Fail 9(1):e002551. doi:10.1161/CIRCHEARTFAILURE.115.002551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85(4):364–376

    Article  CAS  PubMed  Google Scholar 

  27. Shirakabe A, Asai K, Hata N, Yokoyama S, Shinada T, Kobayashi N, Mizuno K (2010) Clinical significance of matrix metalloproteinase (MMP)-2 in patients with acute heart failure. Int Heart J 51(6):404–410

    Article  CAS  PubMed  Google Scholar 

  28. Naito Y, Tsujino T, Lee-Kawabata M, Matsumoto M, Ezumi A, Nakao S, Goda A, Ohyanagi M, Masuyama T (2009) Matrix metalloproteinase-1 and -2 levels are differently regulated in acute exacerbation of heart failure in patients with and without left ventricular systolic dysfunction. Heart Vessels 24(3):181–186. doi:10.1007/s00380-008-1100-7

    Article  PubMed  Google Scholar 

  29. Kampourides N, Tziakas D, Chalikias G, Papazoglou D, Maltezos E, Symeonides D, Konstantinides S (2012) Usefulness of matrix metalloproteinase-9 plasma levels to identify patients with preserved left ventricular systolic function after acute myocardial infarction who could benefit from eplerenone. Am J Cardiol 110(8):1085–1091. doi:10.1016/j.amjcard.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  30. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Stromberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, Guidelines ESCCfP (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 29(19):2388–2442. doi:10.1093/eurheartj/ehn309

    Article  CAS  PubMed  Google Scholar 

  31. Tager T, Frohlich H, Franke J, Slottje K, Horsch A, Zdunek D, Hess G, Dosch A, Katus HA, Wians FH, Frankenstein L (2015) Biological variation of the cardiac index in patients with stable chronic heart failure: inert gas rebreathing compared with impedance cardiography. ESC Heart Fail 2(3):112–120. doi:10.1002/ehf2.12040

    Article  PubMed  PubMed Central  Google Scholar 

  32. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130(6):461–470

    Article  CAS  PubMed  Google Scholar 

  33. R&D Systems I (2013) Quantikine ELISA Total MMP-2 Immunoassay. https://www.rndsystems.com/search?keywords=Quantikine%20ELISA. Accessed 3 Aug 2017

  34. R&D Systems I (2016) Quantikine ELISA Human MMP-9 Immunoassay. https://www.rndsystems.com/search?keywords=Quantikine%20ELISA. Accessed 3 Aug 2017

  35. R&D Systems I (2015) Quantikine ELISA Human TIMP-1 Immunoassay. https://www.rndsystems.com/search?keywords=Quantikine%20ELISA. Accessed 3 Aug 2017

  36. R&D Systems I (2013) Quantikine ELISA Human TIMP-4 Immunoassay. https://www.rndsystems.com/search?keywords=Quantikine%20ELISA. Accessed 3 Aug 2017

  37. Wyrwich KW, Tierney WM, Wolinsky FD (1999) Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. J Clin Epidemiol 52(9):861–873

    Article  CAS  PubMed  Google Scholar 

  38. Wells G, Beaton D, Shea B, Boers M, Simon L, Strand V, Brooks P, Tugwell P (2001) Minimal clinically important differences: review of methods. J Rheumatol 28(2):406–412

    CAS  PubMed  Google Scholar 

  39. Fraser C (2001) Changes in serial results. Biological variation: from principles to practice. AACC Press, Washington, pp 67–90

    Google Scholar 

  40. Frederiksen CB, Lomholt AF, Lottenburger T, Davis GJ, Dowell BL, Blankenstein MA, Christensen IJ, Brunner N, Nielsen HJ (2008) Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1. Int J Biol Markers 23(1):42–47

    Article  CAS  PubMed  Google Scholar 

  41. Engelberger RP, Limacher A, Kucher N, Baumann F, Silbernagel G, Benghozi R, Do DD, Willenberg T, Baumgartner I (2015) Biological variation of established and novel biomarkers for atherosclerosis: results from a prospective, parallel-group cohort study. Clin Chim Acta 447:16–22. doi:10.1016/j.cca.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  42. Ricós CPC, Minchinela J, Álvarez V, Simón M, Biosca C, Doménech M, Fernández P, Jiménez CV, Garcia-Lario JV, Cava F (2009) Application of biological variation—a review. Biochem Med 19(3):250–259. doi:10.11613/BM.2009.023

    Article  Google Scholar 

  43. Schunemann HJ, Guyatt GH (2005) Commentary–goodbye M(C)ID! Hello MID, where do you come from? Health Serv Res 40(2):593–597. doi:10.1111/j.1475-6773.2005.00374.x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iglesias Canadell N, Hyltoft Petersen P, Jensen E, Ricos C, Jorgensen PE (2004) Reference change values and power functions. Clin Chem Lab Med 42(4):415–422. doi:10.1515/CCLM.2004.073

    PubMed  Google Scholar 

  45. Agostoni P, Cattadori G, Apostolo A, Contini M, Palermo P, Marenzi G, Wasserman K (2005) Noninvasive measurement of cardiac output during exercise by inert gas rebreathing technique: a new tool for heart failure evaluation. J Am Coll Cardiol 46(9):1779–1781. doi:10.1016/j.jacc.2005.08.005

    Article  PubMed  Google Scholar 

  46. Koobi T, Kaukinen S, Ahola T, Turjanmaa VM (1997) Non-invasive measurement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods. Intensive Care Med 23(11):1132–1137

    Article  CAS  PubMed  Google Scholar 

  47. Sobanski P, Sinkiewicz W, Kubica J, Blazejewski J, Bujak R (2008) The reliability of noninvasive cardiac output measurement using the inert gas rebreathing method in patients with advanced heart failure. Cardiol J 15(1):63–70

    PubMed  Google Scholar 

  48. Trinkmann F, Berger M, Hoffmann U, Borggrefe M, Kaden JJ, Saur J (2011) A comparative evaluation of electrical velocimetry and inert gas rebreathing for the non-invasive assessment of cardiac output. Clin Res Cardiol 100(10):935–943. doi:10.1007/s00392-011-0329-9

    Article  PubMed  Google Scholar 

  49. Saur J, Fluechter S, Trinkmann F, Papavassiliu T, Schoenberg S, Weissmann J, Haghi D, Borggrefe M, Kaden JJ (2009) Noninvasive determination of cardiac output by the inert-gas-rebreathing method—comparison with cardiovascular magnetic resonance imaging. Cardiology 114(4):247–254. doi:10.1159/000232407

    Article  PubMed  Google Scholar 

  50. Yancy C, Abraham WT (2003) Noninvasive hemodynamic monitoring in heart failure: utilization of impedance cardiography. Congest Heart Fail 9(5):241–250

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Novartis, Basel, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Frankenstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

An informed consent was obtained from each patient.

Ethical standards

The study conformed to the principles of the declaration of Helsinki and was approved by the local Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Täger, T., Wiebalck, C., Fröhlich, H. et al. Biological variation of extracellular matrix biomarkers in patients with stable chronic heart failure. Clin Res Cardiol 106, 974–985 (2017). https://doi.org/10.1007/s00392-017-1147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1147-5

Keywords

Navigation