Skip to main content

Advertisement

Log in

Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Renal denervation (RDN), a novel therapy for resistant hypertension, has been shown to have an effect on cardiac remodeling in several small studies. We aimed to pool currently available data to assess the effects of RDN on left ventricular hypertrophy (LVH) and left atrial (LA) enlargement.

Methods and results

Two investigators independently searched PubMed, EMBASE and Cochrane Library Central Register of Controlled Trials database for studies reporting change in left ventricular mass index (LVMI) or LA size before and after RDN. Twelve publications met our pre-defined inclusion criteria. Echocardiographic data showed that RDN markedly reduced both LVMI [weighted mean difference (WMD) = −15.77 g/m2; 95 % confidence interval (CI) −22.51 to −9.02 g/m2] and LA diameter [WMD = −2.48 mm; 95 % CI −4.12 to −0.83 mm] after 6 months. Data from cardiac magnetic resonance also showed a significant reduction in LVMI [WMD = −5.43 g/m2, 95 % CI −10.01 to −0.35 g/m2) at 6 months. Changes in LVH and LA size at 12 months were more pronounced than those at 6 months. Meta-regression analysis failed to demonstrate a significant relationship between RDN-induced LVMI reduction and BP lowering at 6 months.

Conclusions

RDN led to significant regressions of both LVH and LA enlargement at 6 months, which were sustained at least up to 12 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D (1995) Left atrial size and the risk of stroke and death The Framingham Heart Study. Circulation 92(4):835–841

    Article  CAS  PubMed  Google Scholar 

  2. Haider AW, Larson MG, Benjamin EJ, Levy D (1998) Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 32(5):1454–1459

    Article  CAS  PubMed  Google Scholar 

  3. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris K, Aurup P, Dahlöf B (2004) Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292(19):2350–2356

    Article  CAS  PubMed  Google Scholar 

  4. Gerdts E, Wachtell K, Omvik P, Otterstad JE, Oikarinen L, Boman K, Dahlöf B, Devereux RB (2007) Left atrial size and risk of major cardiovascular events during antihypertensive treatment Losartan intervention for endpoint reduction in hypertension trial. Hypertension 49(2):311–316

    Article  CAS  PubMed  Google Scholar 

  5. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press 22(4):193–278

    Article  Google Scholar 

  6. Persell SD (2011) Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension 57(6):1076–1080

    Article  CAS  PubMed  Google Scholar 

  7. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D (2008) Resistant hypertension: diagnosis, evaluation, and treatment a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51(6):1403–1419

    Article  CAS  PubMed  Google Scholar 

  8. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, O’Connor PJ, Selby JV, Ho PM (2012) Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 125(13):1635–1642

    Article  PubMed  PubMed Central  Google Scholar 

  9. Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Rosei EA (2013) Resistant hypertension and target organ damage. Hypertens Res 36(6):485–491

    Article  PubMed  Google Scholar 

  10. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. The Lancet 373(9671):1275–1281

    Article  Google Scholar 

  11. Investigators SH- (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. The Lancet 376(9756):1903–1909

    Article  Google Scholar 

  12. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC (2012) Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59(10):901–909. doi:10.1016/j.jacc.2011.11.034

    Article  PubMed  Google Scholar 

  13. Carvalho MS, Dores H, De Araujo GoncalvesP, Horta E, Andrade MJ, Sousa H, Branco P, Gaspar A, Mendes M, Almeida M (2014) Effects of renal sympathetic denervation on left ventricular structure and function: 1-year follow-up. Eur Heart J 35:232

    Google Scholar 

  14. Doltra A, Messroghli D, Stawowy P, Hassel JH, Gebker R, Leppanen O, Grafe M, Schneeweis C, Schnackenburg B, Fleck E, Kelle S (2014) Potential reduction of interstitial myocardial fibrosis with renal denervation. J Am Heart Assoc 3(6):e001353. doi:10.1161/jaha.114.001353

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dores H, De Sousa AlmeidaM, De Araújo GonçalvesP, Branco P, Gaspar A, Sousa H, Gomes AC, Andrade MJ, Carvalho MS, Teles RC, Raposo L, Gabriel HM, Machado FP, Mendes M (2014) Renal denervation in patients with resistant hypertension: six-month results. Rev Port Cardiol 33(4):197–204

    PubMed  Google Scholar 

  16. Kiuchi MG, Andrea BR, Kiuchi T, Maia GL, De Queiroz Carreira MA, Chen S, Graciano ML, Lugon JR (2014) Renal sympathetic denervation in patients with hypertension and chronic kidney disease: can heart failure and cardio-renal syndrome be prevented? Eur J Heart Fail 16:147

    Google Scholar 

  17. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, Fries P, Dreysse S, Wellnhofer E, Schneider G, Buecker A, Schneeweis C, Doltra A, Schlaich MP, Esler MD, Fleck E, Bohm M, Kelle S (2014) Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J 35(33):2224–2231b. doi:10.1093/eurheartj/ehu093

  18. McLellan AJ, Schlaich MP, Taylor AJ, Prabhu S, Hering D, Hammond L, Marusic P, Duval J, Sata Y, Ellims A, Esler M, Peter K, Shaw J, Walton A, Kalman JM, Kistler PM (2015) Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm 12(5):982–990. doi:10.1016/j.hrthm.2015.01.039

    Article  PubMed  Google Scholar 

  19. Palionis D, Berukstis A, Misonis N, Ryliskyte L, Celutkiene J, Zakarkaite D, Cerlinskaite K, Valeviciene N, Tamosiunas A, Laucevicius A (2015) Careful patient selection for renal denervation warrants a positive effect on arterial stiffness and left ventricular mass. Eur J Heart Fail 17:27

    Article  Google Scholar 

  20. Schirmer SH, Sayed MM, Reil JC, Lavall D, Ukena C, Linz D, Mahfoud F, Bohm M (2015) Atrial remodeling following catheter-based renal denervation occurs in a blood pressure- and heart rate-independent manner. JACC Cardiovasc Interv 8(7):972–980. doi:10.1016/j.jcin.2015.02.014

    Article  PubMed  Google Scholar 

  21. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Kasiakogias A, Kordalis A, Kefala A, Koutra E, Lau EO, Grassi G, Stefanadis C (2015) Effects of multielectrode renal denervation on cardiac and neurohumoral adaptations in resistant hypertension with cardiac hypertrophy: an EnligHTN I substudy. J Hypertens 33(2):346–353. doi:10.1097/hjh.0000000000000408

    Article  CAS  PubMed  Google Scholar 

  22. Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, Vonken EJ, Voskuil M, Leiner T (2015) Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol 22(5):558–567. doi:10.1177/2047487314556003

    Article  PubMed  Google Scholar 

  23. Tsioufis C, Papademetriou V, Dimitriadis K, Kasiakogias A, Kordalis A, Thomopoulos K, Tsiachris D, Milkas A, Kefala A, Tousoulis D (2015) 8b.08: Sustained beneficial effects of multi-electrode renal denervation on cardiac adaptations in resistant hypertension: a 24-month follow-up study. J Hypertens 33(Suppl 1):e109. doi:10.1097/01.hjh.0000467644.85364.b7

    Article  PubMed  Google Scholar 

  24. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS (2012) A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 60(13):1163–1170

    Article  PubMed  Google Scholar 

  25. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    Article  CAS  PubMed  Google Scholar 

  26. Esler M (2014) Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens 8(8):593–598. doi:10.1016/j.jash.2014.06.001

    Article  PubMed  Google Scholar 

  27. Mahfoud F, Luscher TF (2015) Renal denervation: symply trapped by complexity? Eur Heart J 36(4):199–202. doi:10.1093/eurheartj/ehu450

    Article  PubMed  Google Scholar 

  28. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, Leon MB, Ma A, Massaro J, Mauri L, Oparil S, O’Neill WW, Patel MR, Rocha-Singh K, Sobotka PA, Svetkey L, Townsend RR, Bakris GL (2015) Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 36(4):219–227. doi:10.1093/eurheartj/ehu441

    Article  PubMed  Google Scholar 

  29. Linz D, Bohm M (2015) Renal denervation for treatment of hypertension and beyond. Clin Res Cardiol 104(1):87–88. doi:10.1007/s00392-014-0753-8

    Article  PubMed  Google Scholar 

  30. Dorr O, Liebetrau C, Mollmann H, Mahfoud F, Ewen S, Gaede L, Troidl C, Hoffmann J, Busch N, Laux G, Wiebe J, Bauer T, Hamm C, Nef H (2015) Beneficial effects of renal sympathetic denervation on cardiovascular inflammation and remodeling in essential hypertension. Clin Res Cardiol 104(2):175–184. doi:10.1007/s00392-014-0773-4

    Article  PubMed  Google Scholar 

  31. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2(4):271–278

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5(8):837–848

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schirmer SH, Sayed MM, Reil JC, Ukena C, Linz D, Kindermann M, Laufs U, Mahfoud F, Bohm M (2014) Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol 63(18):1916–1923. doi:10.1016/j.jacc.2013.10.073

    Article  PubMed  Google Scholar 

  34. Mahfoud F, Böhm M, Azizi M, Pathak A, Zaleski ID, Ewen S, Tsioufis K, Andersson B, Blankestijn PJ, Burnier M, Chatellier G, Gafoor S, Grassi G, Joner M, Kjeldsen SE, Lüscher TF, Lobo MD, Lotan C, Parati G, Redon J, Ruilope L, Sudano I, Ukena C, van Leeuwen E, Volpe M, Windecker S, Witkowski A, Wijns W, Zeller T, Schmieder RE (2015) Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 36(33):2219–2227. doi:10.1093/eurheartj/ehv192

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijun Shan.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Study population and quality assessment of included studies (DOCX 19 kb)

Supplementary Table 2

Changes in systolic blood pressure at different follow-up intervals. delta1 = absolute change in SBP from baseline; delta2 = percentage change in SBP from baseline; FU (m) = follow-up (months); ABPM = ambulatory BP monitoring (DOCX 16 kb)

Supplementary Figure 1

Forest plot demonstrating changes in LVM indexed to height 2.7 following renal denervation at 6 months (TIFF 1766 kb)

Supplementary Figure 2

Forest plot demonstrating changes in LVM indexed to height 1.7 following renal denervation at 6 months (TIFF 1802 kb)

Supplementary Figure 3

Meta-regression between standard mean difference of LVMI change and absolute (A) or percentage (B) change in systolic blood pressure at 6 months (TIFF 1208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Wang, K., Liu, Q. et al. Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol 105, 648–656 (2016). https://doi.org/10.1007/s00392-016-0964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-016-0964-2

Keywords

Navigation