Skip to main content
Log in

Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

Despite the ongoing debate on the role of renal sympathetic denervation (RSD) in the management of therapy-resistant hypertension, little is known about its possible effects on exercise blood pressure (BP), a known predictor for future cardiovascular events. We sought to evaluate the effect of RSD on exercise BP in a randomized, sham-controlled trial in patients with mild hypertension.

Methods and results

Patients with therapy-resistant mild hypertension (defined by mean daytime systolic BP between 135 and 149 mmHg or mean daytime diastolic BP between 90 and 94 mmHg on 24-h ambulatory BP measurement) were randomized to either radiofrequency-based RSD or a sham procedure. Patients underwent cardiopulmonary exercise testing at baseline and after 6 months. Of the 71 patients randomized, data from cardiopulmonary exercise testing were available for 48 patients (22 in the RSD group, 26 in the sham group). After 6 months, patients undergoing RSD had a significantly lower systolic BP at maximum exercise workload compared to baseline (−14.2 ± 26.1 mmHg, p = 0.009). In contrast, no change was observed in the sham group (0.6 ± 22.9 mmHg, p = 0.45, p = 0.04 for between-group comparison). When analyzing patients with exaggerated baseline exercise BP only, the effect was even more pronounced (RSD vs. sham −29.5 ± 23.4 vs. 0.1 ± 25.3 mmHg, p = 0.008).

Conclusion

Exercise systolic BP values in patients with mild therapy-resistant hypertension are reduced after RSD as compared to a sham-procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

RSD:

Renal sympathetic denervation

References

  1. Desch S et al (2015) Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 65:1202–1208

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt DL et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    Article  CAS  PubMed  Google Scholar 

  3. Rosa J et al (2015) Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 65(2):407–413

    Article  CAS  PubMed  Google Scholar 

  4. Azizi M et al (2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385(9981):1957–1965

    Article  PubMed  Google Scholar 

  5. Vogel B et al (2014) Renal sympathetic denervation therapy in the real world: results from the Heidelberg registry. Clin Res Cardiol 103(2):117–124

    Article  PubMed  Google Scholar 

  6. Anderson C et al (2003) Triggers of subarachnoid hemorrhage: role of physical exertion, smoking, and alcohol in the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke 34(7):1771–1776

    Article  PubMed  Google Scholar 

  7. Willich SN et al (1993) Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N Engl J Med 329(23):1684–1690

    Article  CAS  PubMed  Google Scholar 

  8. Cho MS et al (2012) Association of early systolic blood pressure response to exercise with future cardiovascular events in patients with uncomplicated mild-to-moderate hypertension. Hypertens Res 35(9):922–927

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fagard R et al (1991) Prognostic significance of exercise versus resting blood pressure in hypertensive men. Hypertension 17(4):574–578

    Article  CAS  PubMed  Google Scholar 

  10. Mundal R et al (1994) Exercise blood pressure predicts cardiovascular mortality in middle-aged men. Hypertension 24(1):56–62

    Article  CAS  PubMed  Google Scholar 

  11. Filipovsky J, Ducimetiere P, Safar ME (1992) Prognostic significance of exercise blood pressure and heart rate in middle-aged men. Hypertension 20(3):333–339

    Article  CAS  PubMed  Google Scholar 

  12. Ukena C et al (2011) Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 58(11):1176–1182

    Article  PubMed  Google Scholar 

  13. Ewen S et al (2014) Effects of renal sympathetic denervation on exercise blood pressure, heart rate, and capacity in patients with resistant hypertension. Hypertension 63(4):839–845

    Article  CAS  PubMed  Google Scholar 

  14. Dlin RA et al (1983) Follow-up of normotensive men with exaggerated blood pressure response to exercise. Am Heart J 106(2):316–320

    Article  CAS  PubMed  Google Scholar 

  15. Bohm M et al (2015) First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension 65(4):766–774

    Article  PubMed  Google Scholar 

  16. Berntson GG, Uchino BN, Cacioppo JT (1994) Origins of baseline variance and the Law of Initial Values. Psychophysiology 31(2):204–210

    Article  CAS  PubMed  Google Scholar 

  17. Bakris GL et al (2014) Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol 64(11):1071–1078

    Article  PubMed  Google Scholar 

  18. E.E.T.F.f.t.M.o.A. Hypertension (2013) 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 31(10):1925–1938

    Article  Google Scholar 

  19. Pickering TG et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 111(5):697–716

    Article  PubMed  Google Scholar 

  20. Ott C et al (2013) Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol 62(20):1880–1886

    Article  PubMed  Google Scholar 

  21. Poss J et al (2015) Effects of renal sympathetic denervation on urinary sodium excretion in patients with resistant hypertension. Clin Res Cardiol 104(8):672–678

    Article  PubMed  Google Scholar 

  22. Dorr O et al (2015) Neuropeptide Y as an indicator of successful alterations in sympathetic nervous activity after renal sympathetic denervation. Clin Res Cardiol 104:1064–1071

    Article  PubMed  Google Scholar 

  23. Donazzan L et al (2015) Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol

  24. van Brussel PM et al (2015) Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension. Int J Cardiol 202:609–614

    Article  PubMed  Google Scholar 

  25. Tsioufis C et al (2014) Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens 28(10):587–593

    Article  CAS  PubMed  Google Scholar 

  26. Heart rate variability (1996) Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17(3):354–381

    Article  Google Scholar 

  27. Poh MZ, Swenson NC, Picard RW (2010) A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans Biomed Eng 57(5):1243–1252

    Article  PubMed  Google Scholar 

  28. Thomopoulos C et al (2013) Metabolic effects of renal denervation. Curr Clin Pharmacol 8(3):206–211

    Article  CAS  PubMed  Google Scholar 

  29. Mahfoud F et al (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123(18):1940–1946

    Article  CAS  PubMed  Google Scholar 

  30. Kokkinos P et al (2006) Beta-blockade mitigates exercise blood pressure in hypertensive male patients. J Am Coll Cardiol 47(4):794–798

    Article  CAS  PubMed  Google Scholar 

  31. Izzo JL Jr et al (2012) Hemodynamic and central blood pressure differences between carvedilol and valsartan added to lisinopril at rest and during exercise stress. J Am Soc Hypertens 6(2):117–123

    Article  CAS  PubMed  Google Scholar 

  32. Vanhees L et al (1991) Effect of antihypertensive medication on endurance exercise capacity in hypertensive sportsmen. J Hypertens 9(11):1063–1068

    Article  CAS  PubMed  Google Scholar 

  33. Zuern CS et al (2013) Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 62(22):2124–2130

    Article  PubMed  Google Scholar 

  34. Reddy VY, Olin JW (2014) Renal denervation for resistant hypertension: not dead yet. J Am Coll Cardiol 64(11):1088–1091

    Article  PubMed  Google Scholar 

  35. Mahfoud F et al (2015) Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 36(33):2219–2227

    Article  PubMed  Google Scholar 

  36. Glicklich D, Frishman WH (2015) Drug therapy of apparent treatment-resistant hypertension: focus on mineralocorticoid receptor antagonists. Drugs 75(5):473–485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Lurz.

Ethics declarations

Conflict of interest

PL received speaker fees from Medtronic. No other conflict of interest has been reported.

Ethical standards

All patients provided written informed consent for participation in this trial. The study was approved by the local Institutional Review Board and conducted in accordance with the principles of the Declaration of Helsinki.

Additional information

S. Desch and P. Lurz, both the senior authors, contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fengler, K., Heinemann, D., Okon, T. et al. Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial. Clin Res Cardiol 105, 592–600 (2016). https://doi.org/10.1007/s00392-015-0955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0955-8

Keywords

Navigation