Skip to main content
Log in

Not left ventricular lead position, but the extent of immediate asynchrony reduction predicts long-term response to cardiac resynchronization therapy

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) is an effective treatment for a large subgroup of chronic heart failure patients. Various attempts to improve the high non-responder rate of 30 % by preoperative asynchrony assessment have failed. We hypothesized that superior response to CRT is correlated with greater acute reduction of asynchrony and that a concordant left ventricular (LV) lead is beneficial compared to a discordant lead. Hundred and eight consecutive CRT patients from our center were prospectively included. Clinical status and asynchrony parameters were assessed before, 1 day and 6 months after CRT implantation. Super-response was defined as an increase of the LV ejection fraction by ≥15 % and a decrease in LV end systolic volume (LVESV) by ≥30 %. When the criteria for super-response were not met, average response was given with a decrease of baseline LVESV ≥15 %. Sixty eight patients were classified as responders (63 %). Comparing super- (n = 19) and average (n = 49) responders, we found that greater acute reduction of LV asynchrony (change of asynchronous segments under CRT: −1.3 vs. −0.4, p < 0.05; decrease of LV intraventricular delay: −34 ms vs. −16 ms, p < 0.05) is associated with superior reverse remodeling after 6 months. Importantly, asynchrony parameters of super-, average and non-responders were almost identical at baseline. A concordant LV lead (n = 63) was not associated with improved LV reverse remodeling compared to a discordant lead (n = 28): LVEF: +8.6 % vs. +7.8 %, p = 0.91; LVESV: −30.5 ml vs. −23.8 mL, p = 0.84. A greater immediate reduction of LV asynchrony predicts superior response. Preoperative asynchrony parameters do not correlate with outcome. A concordant LV lead is not superior to a discordant lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AVO:

Aortic valve opening

CRT:

Cardiac resynchronization therapy

IVMD:

Interventricular mechanical delay

LAO:

Left anterior oblique

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

LVESV:

Left ventricular end systolic volume

NYHA:

New York Heart Association

RAO:

Right anterior oblique

RV:

Right ventricle

SD:

Standard deviation

TDI:

Tissue Doppler imaging

TSI:

Tissue synchronization imaging

References

  1. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  PubMed  Google Scholar 

  2. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150

    Article  CAS  PubMed  Google Scholar 

  3. Cleland JG, Daubert JC, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    Article  CAS  PubMed  Google Scholar 

  4. Linde C, Leclercq C, Rex S et al (2002) Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study. J Am Coll Cardiol 40:111–118

    Article  PubMed  Google Scholar 

  5. Moss AJ, Hall WJ, Cannom DS et al (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361:1329–1338

    Article  PubMed  Google Scholar 

  6. Vardas PE, Auricchio A, Blanc JJ et al (2007) European practice guidelines on cardiac pacemakers and cardiac resynchronization therapy. Working Group of the European Society of Cardiology (ESC) on cardiac pacemakers and cardiac resynchronization therapy. Developed in collaboration with the European Heart Rhythm Association. Rev Esp Cardiol 60:1272.e1–1272.e51

    Google Scholar 

  7. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869

    Article  CAS  PubMed  Google Scholar 

  8. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117:2608–2616

    Article  PubMed  Google Scholar 

  9. Fung JW, Lam YY, Zhang Q et al (2009) Effect of left ventricular lead concordance to the delayed contraction segment on echocardiographic and clinical outcomes after cardiac resynchronization therapy. J Cardiovasc Electrophysiol 20:530–535

    Article  PubMed  Google Scholar 

  10. Khan FZ, Virdee MS, Palmer CR et al (2012) Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol 59:1509–1518

    Article  PubMed  Google Scholar 

  11. Saba S, Marek J, Schwartzman D, et al. (2013) Echocardiography-Guided Left Ventricular Lead Placement for Cardiac Resynchronization Therapy: Results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region (STARTER) Trial. Circ Heart Fail

  12. Cazeau S, Bordachar P, Jauvert G et al (2003) Echocardiographic modeling of cardiac dyssynchrony before and during multisite stimulation: a prospective study. Pacing Clin Electrophysiol 26:137–143

    Article  CAS  PubMed  Google Scholar 

  13. Dreger H, Borges AC, Ismer B et al (2009) A modified echocardiographic protocol with intrinsic plausibility control to determine intraventricular asynchrony based on TDI and TSI. Cardiovasc Ultrasound 7:46

    Article  PubMed Central  PubMed  Google Scholar 

  14. Eberhardt F, Hanke T, Fitschen J et al (2012) AV interval optimization using pressure volume loops in dual chamber pacemaker patients with maintained systolic left ventricular function. Clin Res Cardiol 101(8):647–653

    Article  PubMed  Google Scholar 

  15. Neuzner J (2012) Carlsson J Dual- versus single-coil implantable defibrillator leads: review of the literature. Clin Res Cardiol 101(4):239–245

    Article  PubMed  Google Scholar 

  16. Rickard J, Kumbhani DJ, Popovic Z et al (2010) Characterization of super-response to cardiac resynchronization therapy. Heart Rhythm 7(7):885–889

    Article  PubMed  Google Scholar 

  17. Reant P, Zaroui A, Donal E et al (2010) Identification and characterization of super-responders after cardiac resynchronization therapy. Am J Cardiol 105:1327–1335

    Article  PubMed  Google Scholar 

  18. Antonio N, Teixeira R, Coelho L et al (2009) Identification of ‘super-responders’ to cardiac esynchronization therapy: the importance of symptom duration and left ventricular geometry. Europace 11:343–349

    Article  PubMed  Google Scholar 

  19. Castellant P, Fatemi M, Bertault-Valls V et al (2008) Cardiac resynchronization therapy: “nonresponders” and “hyperresponders”. Heart Rhythm 2:193–197

    Article  Google Scholar 

  20. Gasparini M, Regoli F, Ceriotti C et al (2008) Remission of left ventricular systolic dysfunction and of heart failure symptoms after cardiac resynchronization therapy: temporal pattern and clinical predictors. Am Heart J 155(3):507–514

    Article  PubMed  Google Scholar 

  21. Reithmann C, Herkommer B, Huemmer A et al (2013) The risk of delayed atrioventricular and intraventricular conduction block following ablation of bundle branch reentry. Clin Res Cardiol 102(2):145–153

    Article  PubMed  Google Scholar 

  22. Wasmer K, Kobe J, Andresen D et al (2013) Comparing outcome of patients with coronary artery disease and dilated cardiomyopathy in ICD and CRT recipients: data from the German DEVICE-registry. Clin Res Cardiol 102(7):513–521

    Article  PubMed  Google Scholar 

  23. Schau T, Koglek W, Brandl J et al (2013) Baseline vectorcardiography as a predictor of invasively determined acute hemodynamic response to cardiac resynchronization therapy. Clin Res Cardiol 102(2):129–138

    Article  PubMed  Google Scholar 

  24. Berger T, Zwick RH, Stuehlinger M et al (2011) Impact of oxygen uptake efficiency slope as a marker of cardiorespiratory reserve on response to cardiac resynchronization therapy. Clin Res Cardiol 100(2):159–166

    Article  PubMed  Google Scholar 

  25. Padeletti L, Fantappie C, Perrotta L et al (2011) Cardiac memory in humans: vectocardiographic quantification in cardiac resynchronization therapy. Clin Res Cardiol 100(1):51–56

    Article  PubMed  Google Scholar 

  26. Delgado V, van Bommel RJ, Bertini M et al (2011) Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123:70–78

    Article  PubMed  Google Scholar 

  27. Delgado V, Ypenburg C, van Bommel RJ et al (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51(20):1944–1952

    Article  PubMed  Google Scholar 

  28. Van de Veire NR, Bleeker GB, De Sutter J et al (2007) Tissue synchronisation imaging accurately measures left ventricular dyssynchrony and predicts response to cardiac resynchronisation therapy. Heart 93:1034–1039

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bleeker GB, Bax JJ, Fung JW et al (2006) Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. Am J Cardiol 97:260–263

    Article  PubMed  Google Scholar 

  30. Van Bommel RJ, Schalij MJ, Bax JJ (2009) Should the left ventricular pacing lead be positioned at the site of latest mechanical activation in cardiac resynchronization therapy? J Cardiovasc Electrophysiol 20(5):536–538

    Article  PubMed  Google Scholar 

  31. Aiba T, Barth A, Tomaselli GF (2008) Deciphering gene expression profiling in cardiac resynchronization therapy. J Am Coll Cardiol 52(14):1177 author reply 1177–1178

    Article  PubMed  Google Scholar 

  32. Klemm HU, Krause KT, Ventura R et al (2010) Slow wall motion rather than electrical conduction delay underlies mechanical dyssynchrony in postinfarction patients with narrow QRS complex. J Cardiovasc Electrophysiol 21(1):70–77

    Article  PubMed  Google Scholar 

  33. Rose J, Armoundas AA, Tian Y et al (2005) Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol 288:H2077–H2087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Akar FG, Rosenbaum DS (2003) Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res 93:638–645

    Article  CAS  PubMed  Google Scholar 

  35. Kaab S, Nuss HB, Chiamvimonvat N et al (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78:262–273

    Article  CAS  PubMed  Google Scholar 

  36. Tsuji Y, Zicha S, Qi XY et al (2006) Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation 113:345–355

    Article  CAS  PubMed  Google Scholar 

  37. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    Article  CAS  PubMed  Google Scholar 

  38. Aiba T, Hesketh GG, Barth AS et al (2009) Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation 119:1220–1230

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ukena C, Bauer A, Mahfoud F et al (2012) Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 101(1):63–67

    Article  PubMed  Google Scholar 

  40. Aiba T, Tomaselli G (2012) Electrical remodeling in dyssynchrony and resynchronization. J Cardiovasc Transl Res 5(2):170–179

    Article  PubMed  Google Scholar 

  41. Sachse FB, Torres NS, Savio-Galimberti E et al (2012) Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res 110:588–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yilmaz A, Gdynia HJ, Ponfick M et al (2012) Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy. Clin Res Cardiol 101(4):255–261

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram C. Poller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poller, W.C., Dreger, H., Schwerg, M. et al. Not left ventricular lead position, but the extent of immediate asynchrony reduction predicts long-term response to cardiac resynchronization therapy. Clin Res Cardiol 103, 457–466 (2014). https://doi.org/10.1007/s00392-014-0672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0672-8

Keywords

Navigation