Skip to main content
Log in

Electrical Remodeling in Dyssynchrony and Resynchronization

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Heart failure (HF) is associated with anatomic and functional remodeling of cardiac tissues in both animal models and humans, which alters Ca2+ homeostasis, protein phosphorylation, excitation–contraction coupling, results in arrhythmias. Indeed, the electrophysiological hallmark of cells and tissues isolated from failing hearts is prolongation of action potential duration (APD) and conduction slowing. The changes in cellular and tissue function are regionally heterogenous particularly in the dyssynchronously contracting heart. Cardiac resynchronization therapy (CRT) is widely applied in patients with HF and dyssynchronous left ventricular (LV) contraction (DHF), but the electrophysiological consequences of CRT are not fully understood. We demonstrated the molecular and cellular basis of excitability, conduction, and electrical remodeling in DHF and its restoration by CRT using a canine tachypacing HF model. CRT partially reversed the DHF-induced downregulation of K+ current and improved Na+ channel gating and abbreviated persistent (late) Na+ current. CRT reduced Ca2+/calmodulin protein kinase II activity and restored transverse tubular system and spatial distribution of ryanodine receptor, thus it significantly improved Ca2+ homeostasis especially in myocytes from late-activated, lateral wall and restored the DHF-induced blunted β-adrenergic receptor responsiveness. CRT abbreviated DHF-induced prolongation of APD in the lateral wall myocytes and reduced the LV regional gradient of APD and suppressed the development of early afterdepolarizations. In conclusion, CRT partially restores the DHF-induced ion channel remodeling, abnormal Ca2+ homeostasis, blunted β-adrenergic response, and regional heterogeneity of APD, thus it may suppress ventricular arrhythmias and contribute to the mortality benefit of CRT as well as improve mechanical performance of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Heart Association. (2002). Heart disease and stroke statistics—2003 update. Dallas, Texas.

  2. Tsuchihashi-Makaya, M., Hamaguchi, S., Kinugawa, S., et al. (2009). Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circulation Journal, 73(10), 1893–1900.

    Article  PubMed  Google Scholar 

  3. Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352(15), 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  4. Medina-Ravell, V. A., Lankipalli, R. S., Yan, G. X., et al. (2003). Effect of epicardial or biventricular pacing to prolong QT interval and increase transmural dispersion of repolarization: Does resynchronization therapy pose a risk for patients predisposed to long QT or torsade de pointes? Circulation, 107(5), 740–746.

    Article  PubMed  Google Scholar 

  5. Harada, M., Osaka, T., Yokoyama, E., et al. (2006). Biventricular pacing has an advantage over left ventricular epicardial pacing alone to minimize proarrhythmic perturbation of repolarization. Journal of Cardiovascular Electrophysiology, 17(2), 151–156.

    Article  PubMed  Google Scholar 

  6. Fish, J. M., Di Diego, J. M., Nesterenko, V., et al. (2004). Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization: Implications for biventricular pacing. Circulation, 109(17), 2136–2142.

    Article  PubMed  Google Scholar 

  7. Chalil, S., Yousef, Z. R., Muyhaldeen, S. A., et al. (2006). Pacing-induced increase in QT dispersion predicts sudden cardiac death following cardiac resynchronization therapy. Journal of the American College of Cardiology, 47(12), 2486–2492.

    Article  PubMed  Google Scholar 

  8. Young, J. B., Abraham, W. T., Smith, A. L., et al. (2003). Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. Journal of the American Medical Association, 289(20), 2685–2694.

    Article  PubMed  Google Scholar 

  9. McSwain, R. L., Schwartz, R. A., DeLurgio, D. B., et al. (2005). The impact of cardiac resynchronization therapy on ventricular tachycardia/fibrillation: An analysis from the combined Contak-CD and InSync-ICD studies. Journal of Cardiovascular Electrophysiology, 16(11), 1168–1171.

    Article  PubMed  Google Scholar 

  10. Bristow, M. R., Saxon, L. A., Boehmer, J., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350(21), 2140–2150.

    Article  PubMed  CAS  Google Scholar 

  11. Arya, A., Haghjoo, M., Dehghani, M. R., et al. (2005). Effect of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in patients with an implantable cardioverter-defibrillator. Heart Rhythm, 2(10), 1094–1098.

    Article  PubMed  Google Scholar 

  12. Moss, A. J., Hall, W. J., Cannom, D. S., et al. (2009). Cardiac-resynchronization therapy for the prevention of heart-failure events. The New England Journal of Medicine, 361(14), 1329–1338.

    Article  PubMed  Google Scholar 

  13. Yu, C. M., Chan, J. Y., Zhang, Q., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361(22), 2123–2134.

    Article  PubMed  Google Scholar 

  14. Bai, R., Di Biase, L., Elayi, C., et al. (2008). Mortality of heart failure patients after cardiac resynchronization therapy: Identification of predictors. Journal of Cardiovascular Electrophysiology, 19(12), 1259–1265.

    Article  PubMed  Google Scholar 

  15. Higgins, S. L., Yong, P., Sheck, D., et al. (2000). Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators. J Am Coll Cardiol. Sep, 36(3), 824–827.

    Article  CAS  Google Scholar 

  16. Di Biase, L., Gasparini, M., Lunati, M., et al. (2008). Antiarrhythmic effect of reverse ventricular remodeling induced by cardiac resynchronization therapy: The InSync ICD (Implantable Cardioverter-Defibrillator) Italian Registry. Journal of the American College of Cardiology, 52(18), 1442–1449.

    Article  PubMed  Google Scholar 

  17. Markowitz, S. M., Lewen, J. M., Wiggenhorn, C. J., et al. (2009). Relationship of reverse anatomical remodeling and ventricular arrhythmias after cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 20(3), 293–298.

    Article  PubMed  Google Scholar 

  18. Kies, P., Bax, J. J., Molhoek, S. G., et al. (2005). Effect of cardiac resynchronization therapy on inducibility of ventricular tachyarrhythmias in cardiac arrest survivors with either ischemic or idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 95(9), 1111–1114.

    Article  PubMed  Google Scholar 

  19. Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.

    Article  PubMed  Google Scholar 

  20. Rose, J., Armoundas, A. A., Tian, Y., et al. (2005). Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 288(5), H2077–H2087.

    Article  PubMed  CAS  Google Scholar 

  21. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1993). Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 379–385.

    PubMed  CAS  Google Scholar 

  22. Akar, F. G., & Rosenbaum, D. S. (2003). Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circulation Research, 93(7), 638–645.

    Article  PubMed  CAS  Google Scholar 

  23. Kaab, S., Nuss, H. B., Chiamvimonvat, N., et al. (1996). Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circulation Research, 78(2), 262–273.

    PubMed  CAS  Google Scholar 

  24. Kaab, S., Dixon, J., Duc, J., et al. (1998). Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 98(14), 1383–1393.

    PubMed  CAS  Google Scholar 

  25. Tsuji, Y., Zicha, S., Qi, X. Y., et al. (2006). Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: Discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation, 113(3), 345–355.

    Article  PubMed  CAS  Google Scholar 

  26. Nattel, S., Maguy, A., Le Bouter, S., et al. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425–456.

    Article  PubMed  CAS  Google Scholar 

  27. Li, G. R., Lau, C. P., Ducharme, A., et al. (2002). Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. American Journal of Physiology. Heart and Circulatory Physiology, 283(3), H1031–H1041.

    PubMed  CAS  Google Scholar 

  28. Aiba, T., Hesketh, G. G., Barth, A. S., et al. (2009). Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation, 119(9), 1220–1230.

    Article  PubMed  Google Scholar 

  29. Nabauer, M., Beuckelmann, D. J., & Erdmann, E. (1993). Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 386–394.

    PubMed  CAS  Google Scholar 

  30. Zicha, S., Xiao, L., Stafford, S., et al. (2004). Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. The Journal of Physiology, 561(Pt 3), 735–748.

    Article  PubMed  CAS  Google Scholar 

  31. Akar, F. G., Wu, R. C., Juang, G. J., et al. (2005). Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2887–H2896.

    Article  PubMed  CAS  Google Scholar 

  32. Xiao, L., Coutu, P., Villeneuve, L. R., et al. (2008). Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circulation Research, 103, 733–742.

    Article  PubMed  CAS  Google Scholar 

  33. Nuss, H. B., Kaab, S., Kass, D. A., et al. (1999). Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. American Journal of Physiology, 277(1 Pt 2), H80–H91.

    PubMed  CAS  Google Scholar 

  34. Pogwizd, S. M., Schlotthauer, K., Li, L., et al. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88(11), 1159–1167.

    Article  PubMed  CAS  Google Scholar 

  35. Rozanski, G. J., Xu, Z., Whitney, R. T., et al. (1997). Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. Journal of Molecular and Cellular Cardiology, 29(2), 721–732.

    Article  PubMed  CAS  Google Scholar 

  36. Zaritsky, J. J., Eckman, D. M., Wellman, G. C., et al. (2000). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circulation Research, 87(2), 160–166.

    PubMed  CAS  Google Scholar 

  37. McLerie, M., & Lopatin, A. N. (2003). Dominant-negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. Journal of Molecular and Cellular Cardiology, 35(4), 367–378.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, D. W., & Antzelevitch, C. (1995). Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. Mar, 76(3), 351–365.

    CAS  Google Scholar 

  39. Furukawa, T., Bassett, A. L., Furukawa, N., et al. (1993). The ionic mechanism of reperfusion-induced early afterdepolarizations in feline left ventricular hypertrophy. The Journal of Clinical Investigation, 91(4), 1521–1531.

    Article  PubMed  CAS  Google Scholar 

  40. Pitt, G. S., Dun, W., & Boyden, P. A. (2006). Remodeled cardiac calcium channels. Journal of Molecular and Cellular Cardiology, 41(3), 373–388.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, X., Piacentino, V., 3rd, Furukawa, S., et al. (2002). L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circulation Research, 91(6), 517–524.

    Article  PubMed  CAS  Google Scholar 

  42. Schroder, F., Handrock, R., Beuckelmann, D. J., et al. (1998). Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation, 98(10), 969–976.

    PubMed  CAS  Google Scholar 

  43. Takahashi, T., Allen, P. D., Lacro, R. V., et al. (1992). Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. The Journal of Clinical Investigation, 90(3), 927–935.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y., Chen, X., Margulies, K., et al. (2000). L-type Ca2+ channel alpha 1c subunit isoform switching in failing human ventricular myocardium. Journal of Molecular and Cellular Cardiology, 32(6), 973–984.

    Article  PubMed  CAS  Google Scholar 

  45. Hullin, R., Khan, I. F., Wirtz, S., et al. (2003). Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. Journal of Biological Chemistry, 278(24), 21623–21630.

    Article  PubMed  CAS  Google Scholar 

  46. O’Rourke, B., Kass, D. A., Tomaselli, G. F., et al. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies. Circulation Research, 84(5), 562–570.

    PubMed  Google Scholar 

  47. Hobai, I. A., & O’Rourke, B. (2000). Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circulation Research, 87(8), 690–698.

    PubMed  CAS  Google Scholar 

  48. Hobai, I. A., & O’Rourke, B. (2001). Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 103(11), 1577–1584.

    PubMed  CAS  Google Scholar 

  49. Armoundas, A. A., Hobai, I. A., Tomaselli, G. F., et al. (2003). Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circulation Research, 93(1), 46–53.

    Article  PubMed  CAS  Google Scholar 

  50. Reiken, S., Gaburjakova, M., Guatimosim, S., et al. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. Journal of Biological Chemistry, 278(1), 444–453.

    Article  PubMed  CAS  Google Scholar 

  51. Marx, S. O., Reiken, S., Hisamatsu, Y., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell, 101(4), 365–376.

    Article  PubMed  CAS  Google Scholar 

  52. Curran, J., Hinton, M. J., Rios, E., et al. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circulation Research, 100(3), 391–398.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang, M. T., Lokuta, A. J., Farrell, E. F., et al. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91(11), 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  54. Xiao, B., Jiang, M. T., Zhao, M., et al. (2005). Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circulation Research, 96(8), 847–855.

    Article  PubMed  CAS  Google Scholar 

  55. MacDonnell, S. M., Garcia-Rivas, G., Scherman, J. A., et al. (2008). Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808. Circulation Research, 102(8), e65–e72.

    Article  PubMed  CAS  Google Scholar 

  56. Harzheim, D., Movassagh, M., Foo, R. S., et al. (2009). Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11406–11411.

    Article  PubMed  CAS  Google Scholar 

  57. Ling, H., Zhang, T., Pereira, L., et al. (2009). Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. The Journal of Clinical Investigation, 119(5), 1230–1240.

    Article  PubMed  CAS  Google Scholar 

  58. Terentyev, D., Gyorke, I., Belevych, A. E., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circulation Research, 103(12), 1466–1472.

    Article  PubMed  CAS  Google Scholar 

  59. Plotnikov, A. N., Yu, H., Geller, J. C., et al. (2003). Role of L-type calcium channels in pacing-induced short-term and long-term cardiac memory in canine heart. Circulation, 107(22), 2844–2849.

    Article  PubMed  CAS  Google Scholar 

  60. Ai, X., Curran, J. W., Shannon, T. R., et al. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322.

    Article  PubMed  CAS  Google Scholar 

  61. Kohlhaas, M., Zhang, T., Seidler, T., et al. (2006). Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circulation Research, 98(2), 235–244.

    Article  PubMed  CAS  Google Scholar 

  62. Maier, L. S., Zhang, T., Chen, L., et al. (2003). Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research, 92(8), 904–911.

    Article  PubMed  CAS  Google Scholar 

  63. Chakir, K., Daya, S. K., Tunin, R. S., et al. (2008). Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation, 117(11), 1369–1377.

    Article  PubMed  Google Scholar 

  64. Aiba, T., Barth, A. S., Liu, T., et al. (2008). Cardiac resynchronization therapy restores beta-adrenergic reserve of ca2+ homeostasis in a canine model of dyssynchronous heart failure. Circulation, 118(Suppl), 523–524.

    Google Scholar 

  65. Chakir, K., Daya, S. K., Aiba, T., et al. (2009). Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy. Circulation, 119(9), 1231–1240.

    Article  PubMed  CAS  Google Scholar 

  66. Shang, L. L., Pfahnl, A. E., Sanyal, S., et al. (2007). Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circulation Research, 101(11), 1146–1154.

    Article  PubMed  CAS  Google Scholar 

  67. Pu, J., & Boyden, P. A. (1997). Alterations of Na + currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res. Jul, 81(1), 110–119.

    CAS  Google Scholar 

  68. Undrovinas, A. I., Maltsev, V. A., & Sabbah, H. N. (1999). Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cellular and Molecular Life Sciences, 55(3), 494–505.

    Article  PubMed  CAS  Google Scholar 

  69. Valdivia, C. R., Chu, W. W., Pu, J., et al. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475–483.

    Article  PubMed  CAS  Google Scholar 

  70. Aiba, T., Hashambhoy, Y., Barth, A., et al. (2009). Cardiac resynchronization therapy improves altered na channel gating in canine model of dyssynchronous heart failure. Circulation, 120, S627.

    Google Scholar 

  71. Fernandez-Velasco, M., Ruiz-Hurtado, G., Hurtado, O., et al. (2007). TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H238–H245.

    Article  PubMed  CAS  Google Scholar 

  72. Xie, L. H., Chen, F., Karagueuzian, H. S., et al. (2009). Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circulation Research, 104(1), 79–86.

    Article  PubMed  CAS  Google Scholar 

  73. Maltsev, V. A., Reznikov, V., Undrovinas, N. A., et al. (2008). Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: Similarities and differences. American Journal of Physiology. Heart and Circulatory Physiology, 294(4), H1597–H1608.

    Article  PubMed  CAS  Google Scholar 

  74. Wagner, S., Dybkova, N., Rasenack, E. C., et al. (2006). Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na + channels. The Journal of Clinical Investigation, 116(12), 3127–3138.

    Article  PubMed  CAS  Google Scholar 

  75. Aiba, T., Hesketh, G. G., Liu, T., et al. (2010). Na + channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovascular Research, 85(3), 454–463.

    Article  PubMed  CAS  Google Scholar 

  76. Wu, Y., Temple, J., Zhang, R., et al. (2002). Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation, 106(10), 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  77. Wagner, S., Ruff, H. M., Weber, S. L., et al. (2011). Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circulation Research, 108(5), 555–565.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH P01 HL 077180 (to G.F.T) and HL 072488 (to G.F.T) and grant-in-aid for scientific research on innovative areas (23136519 A02) from MEXT (to T.A). Gordon Tomaselli is the Michel Mirowski M.D. Professor in Cardiology. The authors thank Drs. Andreas S. Barth, Khalid Chakir, and David A. Kass for excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Aiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiba, T., Tomaselli, G. Electrical Remodeling in Dyssynchrony and Resynchronization. J. of Cardiovasc. Trans. Res. 5, 170–179 (2012). https://doi.org/10.1007/s12265-012-9348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9348-9

Keywords

Navigation