Skip to main content

Advertisement

Log in

The biophysics of renal sympathetic denervation using radiofrequency energy

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radio-frequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter’s active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lavergne T, Guize L, Le Heuzey J et al (1986) Closed chest atrioventricular junction ablation by high frequency energy transcatheter desiccation. Lancet 2:858–859

    Article  CAS  PubMed  Google Scholar 

  2. Symplicity HTN-2 Investigators (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  Google Scholar 

  3. Ahmed H, Neuzil P, Skoda J et al (2012) Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for the management of drug-resistant hypertension. J Am Coll Cardiol Intv 5:758–765

    Article  Google Scholar 

  4. Smithwick R (1955) Hypertensive vascular disease. Results of and indications for splanchnicectomy. J Chronic Dis 1:477–496

    Article  CAS  PubMed  Google Scholar 

  5. Krum H, Schlaich M, Sobotka P et al (2012) TCT-12 long-term follow-up of catheter-based renal denervation for resistant hypertension confirms durable blood pressure reduction. J Am Coll Cardiol 60:1271–1277. doi:10.1016/j.jacc.2012.08.017

    Article  Google Scholar 

  6. Simplicity HTN-1 Investigators (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011(57):911–917

    Article  Google Scholar 

  7. Mahfoud F, Cremers B, Janker J et al (2012) Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60(2):419–424

    Article  CAS  PubMed  Google Scholar 

  8. Papademetriou V, Worthley S, Tsioufis C et al (2012) Catheter-based renal denervation for the treatment of patients with drug-resistant hypertension: EnligHTN I: three-month data of a first in man study using a multi-electrode radiofrequency ablation catheter. Circulation 125:A19523

    Google Scholar 

  9. Ormiston J, Watson T, van Pelt N et al (2013) First-in-human use of One Shot™ renal denervation system from Covidien. EuroIntervention 8:1090–1094

    Article  PubMed  Google Scholar 

  10. Myat A, Redwood S, Qureshi A et al (2013) Renal sympathetic denervation therapy for resistant hypertension. A contemporary synopsis and future implications. Circ Cardiovasc Interv 6:184–197

    Article  PubMed  Google Scholar 

  11. D’Arsonval M (1891) Action physiologique des courants alternatifs. Comp Rend Soc Biol 43:283

    Google Scholar 

  12. Munro M (2012) Fundamentals of electrosurgery. Part 1: Principles of radiofrequency energy for surgery. In: Feldman L, Fuchshuber P, Jones D (eds) The SAGES manual on the fundamental use of surgical energy (FUSE). Springer, London

    Google Scholar 

  13. Cushing H, Bowie W (1928) Electrosurgery as an aid to the removal of intracranial tumors. Surg Gynecol Obstet 47:751–784

    Google Scholar 

  14. Rosen A, Stuchly M, Vorst A (2002) Applications of RF/microwave in modern medicine. IEEE Trans Microw Theory Tech 50(3):674–693

    Article  Google Scholar 

  15. Dhillon PS, Gonna H, Li A, Wong T, Ward DE (2013) Skin burns associated with radiofrequency catheter ablation of cardiac arrhythmias. Pacing Clin Electrophysiol. doi:10.1111/pace.12123

    PubMed  Google Scholar 

  16. Nath S, Di Marco J, Gallop R, McRury I, Haines D (1996) Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation. Am J Cardiol 77:765–767

    Article  CAS  PubMed  Google Scholar 

  17. Erez A, Shitzer A (1980) Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation. J Biomech Eng 102:42–49

    Article  CAS  PubMed  Google Scholar 

  18. Huang S, Graham A, Wharton K (1988) Radiofrequency catheter ablation of the left and right ventricles: anatomic and electrophysiologic observations. Pacing Clin Electrophysiol 11:449–459

    Article  CAS  PubMed  Google Scholar 

  19. Huang S, Bharati S, Lev M (1987) Electrophysiologic and histologic observations of chronic atrioventricular block induced by closed-chest catheter desiccation with radiofrequency energy. Pacing Clin Electrophysiol 10:805–816

    Article  CAS  PubMed  Google Scholar 

  20. Rippy M, Zarins D, Barman N et al (2011) Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol 100:1095–1101

    Article  PubMed  Google Scholar 

  21. Haines D, Verow A (1990) Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of the ventricular myocardium. Circulation 82:1034–1038

    Article  CAS  PubMed  Google Scholar 

  22. Matsudaira K, Nakagawa H, Wittkampf F et al (2003) High incidence of thrombus formation with impedance rise during radiofrequency ablation using temperature control. Pacing Clin Electrophysiol 26:1227–1237

    Article  PubMed  Google Scholar 

  23. Herrera C, Deneke T, Hocini M et al (2011) Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicentre study. J Am Coll Cardiol 58:681–688

    Article  Google Scholar 

  24. Eick O, Gerritse B, Schumacher B (2000) Popping phenomena in temperature controlled radiofrequency ablation: when and why do they occur? Pacing Clin Electrophysiol 23:253–258

    Article  CAS  PubMed  Google Scholar 

  25. Haines D (1991) Determinants of lesion size during radiofrequency catheter ablation the role of electrode-tissue contact pressure and duration of energy delivery. J Cardiovasc Electrophys 2:509–515

    Article  Google Scholar 

  26. Petersen H, Chen X, Pietersen A, Svensden J, Haunso S (1999) Lesion dimensions during temperature-controlled radiofrequency catheter ablation of left ventricular porcine myocardium: impact of ablation site, electrode size, and convective cooling. Circulation 99:319–325

    Article  Google Scholar 

  27. Nakagawa H, Yamanashi W, Pitha J et al (1995) Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 91:2264–2273

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama K, Nakagawa H, Shah DC et al (2008) Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ Arrhythm Electrophysiol 1:354–362

    Article  PubMed  Google Scholar 

  29. Kirchberger M, Blessing E, Katus H, Vogel B, Zeier M (2012) TCT-208 catheter-based renal sympathetic denervation—results of the Heidelberg registry. J Am Coll Cardiol. doi:10.1016/j.jacc.2012.08.230

    Google Scholar 

  30. Atherton D, Deep N, Mendelsohn F (2012) Micro-anatomy of the renal sympathetic nervous system: a human post-mortem histologic study. Clin Anat 25:628–633

    Article  PubMed  Google Scholar 

  31. Steigerwald K, Titova A, Malle C et al (2012) Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 30:2230–2239

    Article  CAS  PubMed  Google Scholar 

  32. Mahfoud F, Luscher T, Andersson B et al (2013) Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur Heart J. doi:10.1093/eurheartj/eht154

    Google Scholar 

  33. Sobotka P, Mahfoud F, Schlaich M et al (2011) Sympatho-renal axis in chronic disease. Clin Res Cardiol 100:1049–1057

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ukena C, Bauer A, Mahfoud F et al (2012) Renal sympathetic denervation for treatment of electrical storm:first-in-man experience. Clin Res Cardiol 101:63–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Patel and Dr Hayward acknowledge financial support from the Department of Health via the National Institute of Health Research (NIHR) Biomedical Research Unit award to the Royal Brompton National Health Service Trust. Dr Lyon is in receipt of a British Heart Foundation Intermediate Clinical Fellowship. Dr Mahfoud is supported by Deutsche Hochdruckliga, Deutsche Forschungsgemeinschaft and Deutsche Gesellschaft für Kardiologie. FM received scientific support from Medtronic, St. Jude, Vessix and ReCor and received speaker honorarium from Medtronic, St. Jude and Cordis. Professor di Mario has received Speaker’s fees from Medtronic Inc. The other authors have no conflicts to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh C. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H.C., Dhillon, P.S., Mahfoud, F. et al. The biophysics of renal sympathetic denervation using radiofrequency energy. Clin Res Cardiol 103, 337–344 (2014). https://doi.org/10.1007/s00392-013-0618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0618-6

Keywords

Navigation