Skip to main content

Medtronic Ardian Symplicity™ Renal Denervation Devices

  • Chapter
  • First Online:
Renal Denervation

Abstract

In April 2007, Dr. Henry Krum and colleagues successfully performed the first percutaneous renal sympathetic denervation (RDN) in a patient with severe treatment resistant hypertension (TRH). Two years later, they published the sentential Symplicity HTN-1 trial results, assessing the safety and blood pressure lowering effects of renal denervation in 53 THR patients through 12-month follow-up. This report simultaneously captured the interest of the nephrology, hypertension and interventional communities and refocused attention on the kidney as a sympathetic nervous system therapeutic target in the treatment of drug resistant severe hypertension. Subsequent to this report, a small-randomized crossover trial, Symplicity HTN-2, has provided additional insights into the effectiveness and safety of the Medtronic Ardian renal denervation devices and fostered its consideration as a viable therapy for TRH. Preliminary preclinical experience suggests that the most reliable morphological parameters reflecting successful renal denervation are the presence of axonal degeneration and the accompanying decline in renal parenchymal norepinephrine content. The technical procedural parameters (i.e., electrode diameter, temperature, impedance, wattage, number of ablation sites per artery and ablation duration) have been adopted from these surrogates defined in preclinical studies of normal swine renal arteries. This chapter will review the underlying biophysics of RF monopolar ablation, the experience with the Medtronic Ardian renal denervation catheter systems (Symplicity Arch™, Flex™ and Spyral™ Catheters (Table 7.1)) and their points of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang S, Bharati S, Grahman A, Lev M, Marcus F, Odell R. Closed chest catheter desiccation of the atrioventricular junction using radiofrequency energy—a new method of catheter ablation. J Am Coll Cardiol. 1987;9:349–58.

    Article  CAS  PubMed  Google Scholar 

  2. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicenter safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  3. Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomized controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  4. Symplicity HTN-2 Investigators, Esler MD, Krum H, Schlaich M, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126:2976–82.

    Article  CAS  PubMed  Google Scholar 

  5. Krum H, Schlaich M, Bohm M, Rocha-Singh K, Katholi R, Esler M. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2013. doi:10.1016/S0140-6736(13)63192-3.

    PubMed  Google Scholar 

  6. Whayne J, Nath S, Haines D. Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Circulation. 1994;89:2390–5.

    Article  CAS  PubMed  Google Scholar 

  7. Ammar S, Ladich E, Steigerwald K, Deishenhofer I, Joner M. Pathophysiology of renal denervation procedures: from nerve anatomy to procedural parameters. Eurointervention. 2013;9:R85–95.

    Article  Google Scholar 

  8. Patel H, Dhillon P, Mahfoud F, Lindsay A, Hayward C, Ernst S, Lyon A, Rosen S, di Mario C. The biophysics of renal sympathetic denervation using radiofrequency energy. Clin Res Cardiol. 2013. doi:10.1007/s00392-013-0618-6.

    Google Scholar 

  9. Haines E. The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring. Pacing Clin Electrophysiol. 1993;16:586–91.

    Article  CAS  PubMed  Google Scholar 

  10. Erez A, Shitzer A. Controlled destruction and temperature distribution in biological tissues subjected to monoactive electro-coagulation. J Biomech Eng. 1980;102:42–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ko W, Huang S, Lin J, Shau W, Lai L, Chen P. New method for predicting efficiency of heating by measuring bio-impedance during radiofrequency catheter ablation in humans. J Cardiovasc Electrophysiol. 2001;12:819–23.

    Article  CAS  PubMed  Google Scholar 

  12. Avitall B, Mughal K, Hare J, Helms R, Krum D. The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing Clin Electrophysiol. 1997;20:2899–910.

    Article  CAS  PubMed  Google Scholar 

  13. Otomo K, Yamanashi W, Tondo C, Antz M, Bussey J, Pitha J, Arruda M, Nakagawa H, Wittkampf F, Lazzara R, Jackman W. Why a large tip electrode make s a deeper radiofrequency lesion: effects of increase n electrode cooling and electrode-tissue interface area. Pacing Clin Electrophysiol. 1998;9:47–54.

    CAS  Google Scholar 

  14. Nakagawa H, Wittkampf F, Yamanashi W, Pitha J, Imai S, Campbell D, Arruda M, Lazzara R, Jackman W. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation. 1998;98:458–65.

    Article  CAS  PubMed  Google Scholar 

  15. Atherton D, Deep N, Mendelsohn F. Micro-anatomy of the renal sympatheticnervous system: a human postmortem histologic study. Clin Anat. 2012;25:628–33.

    Article  PubMed  Google Scholar 

  16. Tellez A, Rousselle S, Palmieri T, Rate W, Wicks J, Degrange A, Hyon C, Gongora C, Hart R, Grundy W, Kaluza G, Granda J. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Trans Res. 2013;162:381–9.

    Article  Google Scholar 

  17. Rippy M, Zarins D, Barman N. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol. 2011;100:1095–101.

    Article  PubMed  Google Scholar 

  18. Steigerwald K, Titova A, Malle C, Kennerknecht E, Jilek C, Hausleiter J, Nahrig J, Laugwitz K, Loner M. Morphological assessment of renal arteries after radiofrequency ablation catheter-based sympathetic denervation in a porcine model. J Hypertens. 2012;30:2230–9.

    Article  CAS  PubMed  Google Scholar 

  19. Templin C, Jaguszewski M, Ghadri J, Sudano I, Gaehwiler R, Hellermann J, Schoenenberger-Berzins R, Landmesser U, Erne P, Noll G, Luscher T. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Symplicity catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J. 2013. doi:10.1093/eurheasrtj/eht141.

    Google Scholar 

  20. Mahfoud F, Luscher T, Anderson B, Baumgartner I, Cifkova R, DiMario C, Doevendans P, Fagard R, Komajda M, Fajadet J, LeFevre T, Lotan C, Sievert H, Volpe M, Widimsky P, Wijns W, Williams B, Windecker S, Witkowski A, Zeller T, Bohm M. Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur Heart J. 2013;34:2149–57.

    Article  PubMed  Google Scholar 

  21. Hering D, Mahfoud F, Walton S, Krum H, Lambert G, Lambert E, Sobotka P, Bohm M, Cremers B, Esler M, Schlaich M. Renal denervation in moderate to severe CKD. J Soc Nephrol. 2012;23:1250–7.

    Article  CAS  Google Scholar 

  22. Schirmer S, Sayed M, Reil JC, Ukena C, Linz D, Kindermann M, Laufs U, Mahfoud F, Bohm M. Improvements of left-ventricular hypertrophy and diastolic function following renal denervation—effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2013;63:1916–23. doi:10.1016/jacc2013.10.073.

    Article  PubMed  Google Scholar 

  23. Kaiser L, Beister T, Wiese A, von Wedel J, Meincke F, Kreidel F, Busjahn A, Kuck K, Bergmann M. Results of the ALSTER BP real-world registry on renal denervation employing the Symplicity system. Eurointervention. 2014;10:157–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna J. Rocha-Singh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Rocha-Singh, K.J. (2015). Medtronic Ardian Symplicity™ Renal Denervation Devices. In: Heuser, R., Schlaich, M., Sievert, H. (eds) Renal Denervation. Springer, London. https://doi.org/10.1007/978-1-4471-5223-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5223-1_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5222-4

  • Online ISBN: 978-1-4471-5223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics