Skip to main content
Log in

Assessment von Mobilität – geriatrisches Assessment zur Erfassung lokomotorischer Mobilitätseinschränkungen und Perspektiven der Instrumentierung

Assessment of mobility—Geriatric assessment instruments for mobility impairments and perspectives of instrumentation

  • Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Zusammenfassung

Mobilität und deren Einschränkung spielen für die Lebensqualität von geriatrischen Patienten eine wichtige Rolle und beeinflussen Aktivitäten und Teilhabe. Das Assessment der Mobilität ist daher von besonderer Wichtigkeit für die Therapie und Therapieplanung bei geriatrischen Patienten. Es gibt viele Assessmentinstrumente, die jedoch z. B. aufgrund von Bodeneffekten nicht in jeder Patientengruppe sinnvoll eingesetzt werden können. Der Artikel gibt einen Überblick über gängige Assessmentinstrumente und deren differenzierte Bewertung, um ihren Einsatz zu erleichtern. Besondere Berücksichtigung finden dabei Performance-orientierte Aspekte und aktuelle technische Weiterentwicklungen wie tragbare Sensoren.

Abstract

Mobility and its limitations play an important role in the quality of life of geriatric patients and influence activity and participation. The assessment of mobility is therefore of particular importance for treatment and treatment planning in geriatric patients. There is a variety of assessment tools that cannot be used in every patient group, e.g. due to floor effects. This article provides an overview of common assessment tools and facilitates the evaluation and use of these tools. Special consideration is given to performance-oriented aspects and current technical developments such as wearables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Jamour M, Becker C, Bachmann S et al (2011) Empfehlungen für die Durchführung des motorischen Assessments der unteren Extremität zur ICF-basierten Verlaufsbeurteilung der Mobilität in der stationären geriatrischen Rehabilitation. Bericht eines interdisziplinären Konsensusprozesses. Z Gerontol Geriatr 44:429–436. https://doi.org/10.1007/s00391-011-0267-1

    Article  CAS  PubMed  Google Scholar 

  2. Bernhard FP, Sartor Bettecken JK et al (2018) Wearables for gait and balance assessment in the neurological ward—Study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurol. https://doi.org/10.1186/s12883-018-1111-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Morton NA, Nolan J, O’Brien M et al (2015) A head-to-head comparison of the de Morton Mobility Index (DEMMI) and Elderly Mobility Scale (EMS) in an older acute medical population. Disabil Rehabil 37:1881–1887. https://doi.org/10.3109/09638288.2014.982832

    Article  PubMed  Google Scholar 

  4. Denkinger MD, Igl W, Coll-Planas L et al (2009) Evaluation of the short form of the late-life function and disability instrument in geriatric inpatients-validity, responsiveness, and sensitivity to change. J Am Geriatr Soc 57:309–314. https://doi.org/10.1111/j.1532-5415.2008.02095.x

    Article  PubMed  Google Scholar 

  5. Nakano N, Sakura T, Ueda K et al (2020) Evaluation of 3D markerless motion capture accuracy using openpose with multiple video cameras. Front Sport Act Living 2:50. https://doi.org/10.3389/fspor.2020.00050

    Article  Google Scholar 

  6. Webster KE, Wittwer JE, Feller JA (2005) Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 22:317–321. https://doi.org/10.1016/J.GAITPOST.2004.10.005

    Article  PubMed  Google Scholar 

  7. Ekvall Hansson E, Tornberg Ä (2019) Coherence and reliability of a wearable inertial measurement unit for measuring postural sway. BMC Res Notes 12:201. https://doi.org/10.1186/s13104-019-4238-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hobert MA, Meyer SI, Hasmann SE et al (2017) Gait is associated with cognitive flexibility: A dual-tasking study in healthy older people. Front Aging Neurosci 9:154. https://doi.org/10.3389/fnagi.2017.00154

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mellone S, Tacconi C, Chiari L (2012) Validity of a smartphone-based instrumented timed up and go. Gait Posture 36:163–165. https://doi.org/10.1016/j.gaitpost.2012.02.006

    Article  PubMed  Google Scholar 

  10. Hobert MA, Maetzler W, Aminian K, Chiari L (2014) Technical and clinical view on ambulatory assessment in Parkinson’s disease. Acta Neurol Scand 130:139–147. https://doi.org/10.1111/ane.12248

    Article  CAS  PubMed  Google Scholar 

  11. Zijlstra A, Mancini M, Lindemann U et al (2012) Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: event detection based on motion sensors versus force plates. J Neuroeng Rehabil 9:75. https://doi.org/10.1186/1743-0003-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braun B, Veith NT, Hell R et al (2015) Validation and reliability testing of a new, fully integrated gait analysis insole. J Foot Ankle Res. https://doi.org/10.1186/s13047-015-0111-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reinfelder S, Durlak F, Barth J et al (2014) Wearable static posturography solution using a novel pressure sensor sole. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014. Annu Int Conf IEEE Eng Med Biol Soc, S 2973–2976

    Google Scholar 

  14. Galna B, Lord S, Rochester L (2013) Is galt variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Galt Posture 37:580–585. https://doi.org/10.1016/j.gaitpost.2012.09.025

    Article  Google Scholar 

  15. Krupp S für die AG Assessment der Deutschen Gesellschaft für Geriatrie (2021) S1-Leitlinie Geriatrisches Assessment der Stufe 2, Living Guideline. Version 15.10.2021, AWMF-Register-Nr. 084-002LG

    Google Scholar 

  16. Hobert MA, Hofmann W, Bartsch T et al (2020) Vaskulär bedingte Demenzen erkennen und behandeln. Z Gerontol Geriatr 53:687–698. https://doi.org/10.1007/s00391-020-01786-3

    Article  PubMed  Google Scholar 

  17. Weiss A, Herman T, Plotnik M et al (2010) Can an accelerometer enhance the utility of the timed up & go test when evaluating patients with Parkinson’s disease? Med Eng Phys 32:119–125

    Article  PubMed  Google Scholar 

  18. Vasunilashorn S, Coppin AK, Patel KV et al (2009) Use of the short physical performance battery score to predict loss of ability to walk 400 meters: analysis from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 64:223–229. https://doi.org/10.1093/gerona/gIn022

    Article  PubMed  Google Scholar 

  19. Guralnik JM, Simonsick EM, Ferrucci L et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–M94. https://doi.org/10.1093/geronj/49.2.m85

    Article  CAS  PubMed  Google Scholar 

  20. Cesari M, Onder G, Zamboni V et al (2008) Physical function and self-rated health status as predictors of mortality: results from longitudinal analysis in the iISIRENTE study. BMC Geriatr 8:34. https://doi.org/10.1186/1471-2318-8-34

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ostir GV, Volpato S, Fried LP et al (2002) Reliability and sensitivity to change assessed for a summary measure of lower body function: results from the women’s health and aging study. J Clin Epidemiol 55:916–921. https://doi.org/10.1016/s0895-4356(02)00436-5

    Article  PubMed  Google Scholar 

  22. Stoffels AA, De Brandt J, Meys R et al (2021) Short physical performance battery: response to pulmonary rehabilitation and minimal important difference estimates in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 102:2377–2384.e5. https://doi.org/10.1016/j.apmr.2021.05.011

    Article  PubMed  Google Scholar 

  23. Rinaldo L, Caligari M, Acquati C et al (2021) Functional capacity assessment and minimal clinically important difference in post-acute cardiac patients: the role of short physical performance battery. Eur J Prev Cardiol. https://doi.org/10.1093/eurjpc/zwab044

    Article  PubMed  Google Scholar 

  24. Jung H‑W, Roh H, Cho Y et al (2019) Validation of a multi-sensor-based kiosk for short physical performance battery. J Am Geriatr Soc 67:2605–2609. https://doi.org/10.1111/jgs.16135

    Article  PubMed  Google Scholar 

  25. https://www.mcroberts.nl/module/sppb/. Zugegriffen: 31. Okt. 2021

  26. de Morton NA, Davidson M, Keating JL (2008) The de Morton Mobility Index (DEMMI): an essential health index for an ageing world. Health Qual Life Outcomes 6:63. https://doi.org/10.1186/1477-7525-6-63

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Morton NA, Davidson M, Keating JL (2010) Validity, responsiveness and the minimal clinically important difference for the de Morton Mobility Index (DEMMI) in an older acute medical population. BMC Geriatr 10:72. https://doi.org/10.1186/1471-2318-10-72

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dasenbrock L, Berg T, Lurz S et al (2016) The De Morton Mobility Index for evaluation of early geriatric rehabilitation. Z Gerontol Geriatr 49:398–404. https://doi.org/10.1007/s00391-016-1061-x

    Article  CAS  PubMed  Google Scholar 

  29. de Morton NA, Meyer C, Moore KJ et al (2011) Validation of the de Morton Mobility Index (DEMMI) with older community care recipients. Australas J Ageing 30:220–225. https://doi.org/10.1111/j.1741-6612.2010.00497.x

    Article  PubMed  Google Scholar 

  30. Runge M, Rehfeld G (2001) Geriatrische Rehabilitation im therapeutischen Team, 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  31. Jones CJ, Rikli RE, Beam WC (1999) A 30‑s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 70:113–119. https://doi.org/10.1080/02701367.1999.10608028

    Article  CAS  PubMed  Google Scholar 

  32. Ng SSM, Kwong PWH, Chau MSP et al (2015) Effect of arm position and foot placement on the five times sit-to-stand test completion times of female adults older than 50 years of age. J Phys Ther Sci 27:1755–1759. https://doi.org/10.1589/jpts.27.1755

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Lummel RC, Walgaard S, Hobert MA et al (2016) Intra-rater, inter-rater and test-retest reliability of an instrumented timed up and Go (iTUG) test in patients with Parkinson’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0151881

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lindemann U, Farahmand P, Klenk J et al (2015) Validity of linear encoder measurement of sit-to-stand performance power in older people. Physiotherapy 101:298–302. https://doi.org/10.1016/j.physio.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126. https://doi.org/10.1111/j.1532-5415.1986.tb05480.x

    Article  CAS  PubMed  Google Scholar 

  36. Berg K, Wood-Dauphine S, Williams JI, Gayton D (1989) Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 41:304–311. https://doi.org/10.3138/ptc.41.6.304

    Article  Google Scholar 

  37. Maetzler W, Mancini M, Liepelt-Scarfone I et al (2012) Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS One 7:e32240. https://doi.org/10.1371/journal.pone.0032240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim Y‑W, Joa K‑L, Jeong H‑Y, Lee S (2021) Wearable IMU-based human activity recognition algorithm for clinical balance assessment using 1D-CNN and GRU ensemble model. Sensors (Basel). https://doi.org/10.3390/s21227628

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lord S, Galna B, Rochester L (2013) Moving forward on gait measurement: Toward a more refined approach. Mov Disord 28:1534–1543. https://doi.org/10.1002/mds.25545

    Article  PubMed  Google Scholar 

  40. Montero-Odasso M, Almeida QJ, Bherer L et al (2019) Consensus on shared measures of mobility and cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA). J Gerontol A Biol Sci Med Sci 74:897–909. https://doi.org/10.1093/gerona/gly148

    Article  PubMed  Google Scholar 

  41. Lindemann U, Najafi B, Zijlstra W et al (2008) Distance to achieve steady state walking speed in frail elderly persons. Gait Posture 27:91–96. https://doi.org/10.1016/j.gaitpost.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Salkovic D, Hobert MA, Bellut C et al (2017) Evidence for a selectively regulated prioritization shift depending on walking situations in older adults. Front Aging Neurosci 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hobert MA, Niebler R, Meyer SI et al (2011) Poor trail making test performance is directly associated with altered dual task prioritization in the elderly—Baseline results from the TREND study. Plos One 6:e27831. https://doi.org/10.1371/journal.pone.0027831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Odonkor CA, Thomas JC, Holt N et al (2013) A comparison of straight- and curved-path walking tests among mobility-limited older adults. J Gerontol A Biol Sci Med Sci 68:1532–1539. https://doi.org/10.1093/gerona/gIt060

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cullen S, Montero-Odasso M, Bherer L et al (2018) Guidelines for gait assessments in the Canadian Consortium on Neurodegeneration in Aging (CCNA). Can Geriatr J 21:157–165. https://doi.org/10.5770/cgj.21.298

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brooks D, Davis AM, Naglie G (2007) The feasibility of six-minute and two-minute walk tests in in-patient geriatric rehabilitation. Can J Aging 26:159–162. https://doi.org/10.3138/cja.26.2.009

    Article  PubMed  Google Scholar 

  47. Rockwood K, Song X, MacKnight C et al (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489–495. https://doi.org/10.1503/cmaj.050051

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gaßmann KG, Swoboda W, Tümena T et al (2022) Geriatric assessment in the inpatient sector. Z Gerontol Geriatr. https://doi.org/10.1007/s00391-021-02004-4

    Article  PubMed  Google Scholar 

  49. MacKnight C, Rockwood K (1995) A hierarchical assessment of balance and mobility. Age Ageing 24:126–130. https://doi.org/10.1093/ageing/24.2.126

    Article  CAS  PubMed  Google Scholar 

  50. Liebl ME, Elmer N, Schroeder I et al (2016) lntroduction of the charite mobility index (CHARMI)—A novel clinical mobility assessment for acute care rehabilitation. PLoS ONE 11:e169010. https://doi.org/10.1371/journal.pone.0169010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Hobert.

Ethics declarations

Interessenkonflikt

M.A. Hobert und M. Jamour geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobert, M.A., Jamour, M. Assessment von Mobilität – geriatrisches Assessment zur Erfassung lokomotorischer Mobilitätseinschränkungen und Perspektiven der Instrumentierung. Z Gerontol Geriat 55, 116–122 (2022). https://doi.org/10.1007/s00391-022-02040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-022-02040-8

Schlüsselwörter

Keywords

Navigation