Skip to main content
Log in

Genetic instability syndromes with progeroid features

Genetische Instabilitätssyndrome mit progeroiden Manifestationen

  • CONTRIBUTION TO THE MAIN TOPIC
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

We discuss examples of the rare human genetic instability syndromes as they present themselves at the chromosome, telomere, and nuclear envelope level. Destabilization of the nuclear envelope due to mutations in the Lamin A/C gene lead to global impairments of the chromatin structure and gene expression with the fatal consequences observed in the Hutchinson-Gilford juvenile progeria syndrome. Patients with Dyskeratosis congenita have defective telomerase function. These patients exhibit a number of progeroid features, suggesting a causal connection between short telomeres and premature ageing. The most prominent example of the chromosomal instability syndromes is the Werner adult progeria syndrome where impaired helicase and exonuclease functions cause a multitude of (albeit superficial) similarities with the normal ageing process. A less well-know example is Fanconi anemia (FA) a multisystem disorder caused by biallelic mutations in one of at least 13 different genes which include the BRCA2 breast cancer gene. Unlike cells from any other human disorder, FA cells are uniquely sensitive to oxidative stress. In a situation of defective DNA repair, oxidative stress leads to accumulation of (unrepaired) DNA damage. Oxidative stress is the likely culprit of bone marrow failure, risk of neoplasia, and features of premature ageing in FA, rendering this rare disease into the only known human model of the free radical theory of ageing.

Zusammenfassung

Menschliche Krankheitsbilder, die mit genetischer Instabilität einhergehen, manifestieren sich u. a. auf der Ebene der Chromosomen, Telomere und der Kernhülle. Mutationen im Lamin A/C-Gen führen zur Destabilisierung der Kernhülle und damit zu globalen Veränderungen der Zellkernorganisation und der Genexpression. Dies erklärt die Vielzahl der Defekte bei der Hutchinson-Gilford-Progerie. Patienten mit Dykeratosis congenita zeigen ebenfalls vorzeitige Alterungserscheinungen, die aufgrund entsprechender Mutationen mit eingeschränkter Telomerase- Funktion und überdurchschnittlich verkürzten Telomeren in Verbindung gebracht werden. Das bekannteste Beispiel der chromosomalen Instabilitätssyndrome ist das Werner-Syndrom dem biallelische Mutationen in einem Gen mit sowohl Helikaseals auch Exonuklease-Funktion zugrunde liegen. Allerdings zeigt die progeroide Symptomatik des Werner-Syndroms nur oberflächliche Übereinstimmung mit demnormalen Alterungsprozess. Das am wenigsten bekannte Chromosomenbruchsyndrom ist die Fanconi-Anämie, welche durch biallelische Mutationen in einem von zumindest 13 verschiedenen DNA-Reparaturgenen, darunter das BRCA2-Gen, verursacht wird. Die Fanconi-Anämie ist die einzige Erkrankung des Menschen, deren Zellen eine konstitutionelle Überempfindlichkeit gegen oxidativen Stress aufweisen. Die Validität der freien Radikal-Theorie des Alterns lässt sich daher anhand der Fanconi-Anämie erstmals auch am Menschen überprüfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrelo R, Cheng WH, Setien F, Ropero S, Espada J et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103:8822–8827

    Article  PubMed  CAS  Google Scholar 

  2. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I et al (2007) Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369:107–114

    Article  PubMed  CAS  Google Scholar 

  3. Gennery AR (2006) Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Brit Med Bull 78:71–85

    Article  Google Scholar 

  4. Hoehn H, Renner A (2003) Human aging and longevity: genetic aspects. In: Osiewacz HD (ed) Aging of Organisms, Kluwer Academic Publishers, pp 247–269

  5. Huang S, Lee L, Hanson NB. Lenaerts C, Hoehn H et al (2006) The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27:558–567

    Article  PubMed  CAS  Google Scholar 

  6. Huck K, Hanenberg H, Gudowius S, Fenk R, Kalb R et al (2006) Delayed diagnosis and complications of Fanconi anaemia at advanced age – a paradigm. Br J Haematol 133:188–197

    Article  PubMed  CAS  Google Scholar 

  7. Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB (1981) Oxygendependence of chromosomal aberrations in Fanconi's anaemia. Nature 290:142–143

    Article  PubMed  CAS  Google Scholar 

  8. Kalb R, Duerr M, Wagner M, Herterich S, Gross M et al (2004) Lack of sensitivity of primary Fanconi's anemia fibroblasts to UV and ionizing radiation. Radiat Res 161:318–325

    Article  PubMed  CAS  Google Scholar 

  9. Kudlow BA, Kennedy BK, Monnat RJ (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8:394–404

    Article  PubMed  CAS  Google Scholar 

  10. Kyng KJ, Bohr VA (2005) Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res Rev 4:579–602

    Article  PubMed  CAS  Google Scholar 

  11. Lanctôt C, Cheutin R, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  Google Scholar 

  12. Lee JW, Harrigan J, Opresko PL, Bohr VA (2005) Pathways and functions of the Werner syndrome protein. Mech Ageing Dev 126:79–86

    Article  PubMed  CAS  Google Scholar 

  13. Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408:263–266

    Article  PubMed  CAS  Google Scholar 

  14. Martin GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120:523–532

    Article  PubMed  CAS  Google Scholar 

  15. Maurer B, Guttenbach M, Schmid M (2003) Chromosome instability in normative aging. In: Hisama FM, Weissman SM, Martin GM (eds) Chromosomal Instability and Aging. Basic Science and Clinical Implications, Marcel Dekker, New York, pp 125–147

  16. Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H et al (2000) Spectral karyotyping of Werner syndrome fibroblast cultures. Cytogenet Cell Genet 91:180–185

    Article  PubMed  CAS  Google Scholar 

  17. Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H et al (2006) Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol 175:225–235

    Article  PubMed  CAS  Google Scholar 

  18. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503

    Article  PubMed  CAS  Google Scholar 

  19. Neveling K, Kalb R, Schindler D (2007) Cancer in Fanconi anemia and Fanconi anemia genes in cancer. In: Schindler D, Hoehn H (eds) Fanconi anemia. A paradigmatic disease fort he understanding of cancer and aging. Monogr Hum Genet. Karger, Basel, vol 15, pp 59–78

  20. Neveling K, Kalb R, Florl AR, Herterich S, Friedl R et al (2007) Disruption of the FA/BRCA pathway in bladder cancer. Cytogenet Genome Res (in press)

  21. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR et al (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038-1043

    Article  PubMed  CAS  Google Scholar 

  22. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690

    Article  PubMed  CAS  Google Scholar 

  23. Pagano G, Youssoufian H (2003) Fanconi anaemia proteins: major roles in cell protection against oxidative damage. Bioessays 25:589–595

    Article  PubMed  CAS  Google Scholar 

  24. Pagano G, Degan P, d'Ischia M, Kelly FJ, Nobili B et al (2005) Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol 75:93–100

    Article  PubMed  CAS  Google Scholar 

  25. Park SJ, Ciccone SL, Beck BD, Hwang B, Freie B et al (2004) Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 279:30053–30059

    Article  PubMed  CAS  Google Scholar 

  26. Park Y, Gerson SL (2005) DNA repair defects in stem cell function and aging. Annu Rev Med 56:495–508

    Article  PubMed  CAS  Google Scholar 

  27. Patel KJ, Joenje H (2007) Fanconi anemia and DNA replication repair. DNA Repair (Amst) 6:885–890

    Article  CAS  Google Scholar 

  28. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    Article  PubMed  CAS  Google Scholar 

  29. Scaffidi P, Misteli T (2006) Lamin Adependent nuclear defects in human aging. Science 312:1059–1063

    Article  PubMed  CAS  Google Scholar 

  30. Schindler D, Hoehn H (1988) Fanconi anemia mutation causes cellular susceptibility to ambient oxygen. Am J Hum Genet 43:429–435

    PubMed  CAS  Google Scholar 

  31. Schindler D, Friedl R, Gavvovidis I, Kalb R, Neveling K et al (2007) Applications of cell cycle testing in Fanconi anemia. In: Schindler D, Hoehn H (eds) Fanconi anemia. A paradigmatic disease fort he understanding of cancer and aging. Monogr Hum Genet. Karger, Basel, vol 15, pp 110–130

  32. Thoms KM, Kuschal C, Emmert S (2007) Lessons learned from DNA repair defective syndromes. Exp Dermatol 16:532–544

    Article  PubMed  CAS  Google Scholar 

  33. Trivin C, Gluckman E, Leblanc T, Cousin MN, Soulier J, Brauner R (2007) Factors and markers of growth hormone secretion and gonadal function in Fanconi anemia. Growth Hormone and IGF Research 17:122–129

    Article  PubMed  CAS  Google Scholar 

  34. Vulliamy T, Dokal I (2006) Dyskeratosis congenita. Semin Hematol 43:157–166

    Article  PubMed  CAS  Google Scholar 

  35. Wajnrajch MP, Gertner JM, Huma Z, Popovic J, Lin K et al (2001) Evaluation of growth and hormonal status in patients referred to the International Fanconi Anemia Registry. Pediatrics 107:744–754

    Article  PubMed  CAS  Google Scholar 

  36. Wang W (2007) Emergence of a DNA damage response network consisting of Fanconi Anemia and BRCA Proteins. Nat Rev Genet (in press)

  37. Zhang X, Li J, Sejas DP, Pang Q (2005) Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood 106:75–85

    Article  PubMed  CAS  Google Scholar 

  38. Zhang X, Sejas DP, Qiu Y, Williams DA, Pang Q (2007) Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. J Cell Sci 120:1572–1583

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hoehn MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neveling, K., Bechtold, A. & Hoehn, H. Genetic instability syndromes with progeroid features. Z Gerontol Geriat 40, 339–348 (2007). https://doi.org/10.1007/s00391-007-0483-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-007-0483-x

Key words

Schlüsselwörter

Navigation