Skip to main content

Progeria and Genome Instability

  • Chapter
Aging Mechanisms
  • 1853 Accesses

Abstract

Aging is a process of progressive decline in physiological functions. Cells and tissues in our body are constantly exposed to a variety of endogenous and exogenous assaults that cause, DNA damages. The accumulation of unrepaired/irreparable DNA damages results in a sustained DNA damage checkpoint response and induces cellular senescence, a permanent cell cycle arrest. Studies on human premature aging syndromes have suggested that accumulated damages might lead to exhaustion of resources that are required for replacement of the damaged tissues and thus accelerate aging. In this chapter, we summarize current knowledge on DNA damage repair machinery and evidence supporting the idea that defects in genomic maintenance are behind human premature aging syndromes. We put the emphasis on Hutchinson-Gilford Progeria Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci 111:9169–9174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  CAS  PubMed  Google Scholar 

  • Balajee AS, Machwe A, May A, Gray MD, Oshima J, Martin GM, Nehlin JO, Brosh R, Orren DK, Bohr VA (1999) The Werner syndrome protein is involved in RNA polymerase II transcription. Mol Biol Cell 10:2655–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    Article  CAS  PubMed  Google Scholar 

  • Botuyan MV, Lee J, Ward IM, Kim J-E, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127:1361–1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA (1999) Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 274:18341–18350

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, von Kobbe C, Sommers JA, Karmakar P, Opresko PL, Piotrowski J, Dianova I, Dianov GL, Bohr VA (2001) Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. Embo J 20:5791–5801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121:2833–2844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet 362:440–445

    Article  CAS  PubMed  Google Scholar 

  • Chester N, Kuo F, Kozak C, O’Hara CD, Leder P (1998) Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev 12:3382–3393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14:907–912

    PubMed Central  CAS  PubMed  Google Scholar 

  • Csoka AB, Cao H, Sammak PJ, Constantinescu D, Schatten GP, Hegele RA (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41:304–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Ã… resolution. J Mol Biol 319:1097–1113

    Article  CAS  PubMed  Google Scholar 

  • Denecke J, Brune T, Feldhaus T, Robenek H, Kranz C, Auchus RJ, Agarwal AK, Marquardt T (2006) A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS. Hum Mutat 27:524–531

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanna AG (2000) Human aging: biological perspectives. McGraw-Hill, New York

    Google Scholar 

  • Downs JA, Nussenzweig MC, Nussenzweig A (2007) Chromatin dynamics and the preservation of genetic information. Nature 447:951–958

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3:959–967

    Article  CAS  PubMed  Google Scholar 

  • Fleck O, Nielsen O (2004) DNA repair. J Cell Sci 117:515–517

    Article  CAS  PubMed  Google Scholar 

  • Fong LG, Ng JK, Meta M, Cote N, Yang SH, Stewart CL, Sullivan T, Burghardt A, Majumdar S, Reue K et al (2004) Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 101:18111–18116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujimura-Kamada K, Nouvet FJ, Michaelis S (1997) A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol 136:271–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuchi K, Katsuya T, Sugimoto K, Kuremura M, Kim HD, Li L, Ogihara T (2004) LMNA mutation in a 45 year old Japanese subject with Hutchinson-Gilford progeria syndrome. J Med Genet 41:e67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon LB, Rothman FG, López-Otín C, Misteli T (2013) Progeria: a paradigm for translational medicine. Cell 156:400–407

    Article  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17:100–103

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Wang W, Bradley A (2004) Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429:891–895

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  • Hasty P (2005) The impact of DNA damage, genetic mutation and cellular responses on cancer prevention, longevity and aging: observations in humans and mice. Mech Ageing Dev 126:71–77

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  • Hennekam RCM (2006) Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140A:2603–2624

    Article  CAS  Google Scholar 

  • Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3:169–178

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14

    Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′-->5′ exonuclease. Nat Genet 20:114–116

    Article  CAS  PubMed  Google Scholar 

  • Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G (2010) High resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29:1446–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson RD, Liu N, Jasin M (1999) Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399

    CAS  PubMed  Google Scholar 

  • Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PM, Fry M (2001) Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J Biol Chem 276:16439–16446

    Article  CAS  PubMed  Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis TC, El-Osta A (2007) Chromatin modifications and DNA double-strand breaks: the current state of play. Leukemia 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh RM Jr, Sommers JA, Miller SP, Cheng WH, Snowden CM, Ramsden DA, Bohr VA (2002) Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277:18291–18302

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    Article  CAS  PubMed  Google Scholar 

  • Kops GJPL, Ruiter ND, De Vries-Smits AMM, Powell DR, Bos JL, Burgering BMT (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Chow MZY, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci 108:12325–12330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kusumoto-Matsuo R, Opresko PL, Ramsden D, Tahara H, Bohr VA (2010) Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging 2:274–284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lebel M, Spillare EA, Harris CC, Leder P (1999) The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 274:37795–37799

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96

    Article  CAS  PubMed  Google Scholar 

  • Levy N, Lopez-Otin C, Hennekam RC (2005) Defective prelamin A processing resulting from LMNA or ZMPSTE24 mutations as the cause of restrictive dermopathy. Arch Dermatol 141:1473–1474, author reply 1474

    Article  PubMed  Google Scholar 

  • Li B, Comai L (2000) Functional interaction between Ku and the werner syndrome protein in DNA end processing. J Biol Chem 275:28349–28352

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B, Verreault A, Zhang Z (2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134:244–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang J-d, Li KM, Chau PY, Chen DJ (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J, Shell SM, Zou Y (2008) Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J 22:603–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16:738–750

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang Z, Ghosh S, Zhou Z (2013a) Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell 12:316–318

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z (2013b) Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun 4:1868

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Yin X, Liu B, Zheng H, Zhou G, Gong L, Li M, Li X, Wang Y, Hu J et al (2014) HP1alpha mediates defective heterochromatin repair and accelerates senescence in Zmpste24-deficient cells. Cell Cycle 13:1237–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machwe A, Xiao L, Orren DK (2004) TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–156

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  CAS  PubMed  Google Scholar 

  • Maslov AY, Vijg J (2009) Genome instability, cancer and aging. Biochim Biophys Acta 1790:963–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K (2007) The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2:e1269

    Article  PubMed Central  PubMed  Google Scholar 

  • Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H, Kainer K, Schmid M, Hoehn H (2000) Spectral karyotyping of Werner syndrome fibroblast cultures. Cytogenet Cell Genet 91:180–185

    Article  CAS  PubMed  Google Scholar 

  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith ACM, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B et al (2008) Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  CAS  PubMed  Google Scholar 

  • Moulson CL, Go G, Gardner JM, van der Wal AC, Smitt JH, van Hagen JM, Miner JH (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125:913–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Multani AS, Chang S (2007) WRN at telomeres: implications for aging and cancer. J Cell Sci 120:713–721

    Article  CAS  PubMed  Google Scholar 

  • Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D, Hadj-Rabia S, Gaudy-Marqueste C, Smitt HS, Vabres P et al (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 13:2493–2503

    Article  CAS  PubMed  Google Scholar 

  • Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R, Courrier S, Boccaccio I, Boyer A, Kleijer WJ, Wagner A, Giuliano F et al (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet 14:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Osley MA, Shen X (2006) Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 22:671–677

    Article  CAS  PubMed  Google Scholar 

  • Osley MA, Tsukuda T, Nickoloff JA (2007) ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618:65–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandita TK, Richardson C (2009) Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 37:1363–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Partridge L, Mangel M (1999) Messages from mortality: the evolution of death rates in the old. Trends Ecol Evol 14:438–442

    Article  PubMed  Google Scholar 

  • Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K et al (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99

    CAS  PubMed  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants h2ax and h2az. Curr Opin Genet Dev 12:162–169

    Article  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Rusinol AE, Sinensky MS (2006) Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci 119:3265–3272

    Article  CAS  PubMed  Google Scholar 

  • Salk D, Au K, Hoehn H, Martin GM (1981) Cytogenetics of Werner’s syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet Cell Genet 30:92–107

    Article  CAS  PubMed  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Ãœnsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18:416–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci U S A 45:30–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tam A, Nouvet FJ, Fujimura-Kamada K, Slunt H, Sisodia SS, Michaelis S (1998) Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol 142:635–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z (2006) Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5:1940–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765

    Article  PubMed  Google Scholar 

  • Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA et al (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–568

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (2000) The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem 275:9636–9644

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD (2012) Histone H2A. Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48:723–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z, Roginskaya M, Colis LC, Basu AK, Shell SM, Liu Y, Musich PR, Harris CM, Harris TM, Zou Y (2006) Specific and efficient binding of Xeroderma pigmentosum complementation group A to double-strand/single-strand DNA junctions with 3′-and/or 5′-ssDNA branches. Biochemistry 45:15921–15930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

B.L. is an Excellent Young Researcher of National Natural Science Foundation of China (81422016), an awardee of 1000-Young Talents Program (The Organization Department of the Communist Party of China Central Committee), and supported by the Major Research plan of NSFC (91439133). Works in Z.Z.’s laboratory are supported by a NSFC Key Project grant (81330009), a National Key Basic Research Program project (2011CB964700) from Ministry of Science and Technology of China, and a RGC grant (HKU2/CRF/13G) from Hong Kong SAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Meng, F., Liu, B., Zhou, Z. (2015). Progeria and Genome Instability. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_3

Download citation

Publish with us

Policies and ethics