Skip to main content

Advertisement

Log in

Electrogenic transport, oxygen consumption, and sensitivity to acute hypoxia of human colonic epithelium

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Introduction

It is recognized that epithelial ion transport depends on oxygen supply, but this dependence has not been characterized in the human colon in vitro despite its surgical and clinical implications.

Purposes

The aim of this study is to measure the oxygen consumption of colonic epithelium under conditions which preserve vectorial ion transport and to assess the sensitivity of the human colonic epithelium short-circuit current (I sc) to acute hypoxia induced in vitro.

Methods

Isolated mucosa preparations from human sigmoid colon were placed in a modified Ussing chamber which allows simultaneous measurement of short-circuit current (I sc) and oxygen consumption (QO2). In separate experiments, the sensitivity to acute hypoxia induced in a conventional Ussing chamber was assessed.

Results

Basal mean ± SEM values (n = 8) were I sc = 3.3 ± 0.5 μEq h−1 cm−2 and QO2 = 8.09 ± 0.55 μmol h−1 cm−2. The contribution of the serosal side to the oxygen supply was higher than that of the mucosal side (p = 0.0023). Ouabain reduced I sc by 70% (P < 0.0001) and QO2 by 26% (n = 8; P = 0.0009), suggesting that a large fraction of QO2 is needed to support ouabain-sensitive electrogenic transport. Induction of hypoxia at both sides of the Ussing chamber caused a rapid decrease in I sc after 2 min. I sc was also significantly depressed when hypoxia was induced by 5 min in the serosal side (n = 6, P < 0.0001), but was unaffected by hypoxia induced in the mucosal side.

Conclusion

The present results allow a better understanding of the clinical consequences of acute hypoxia on intestinal ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

I sc :

Short-circuit current

PD:

Transepithelial potential difference

QO2 :

Epithelial oxygen consumption

R te :

Transepithelial resistivity

References

  1. Guebel DV, Torres NV (2008) A computer model of oxygen dynamics in human colon mucosa: implications in normal physiology and early tumor development. J Theor Biol 250(3):389–409

    Article  PubMed  CAS  Google Scholar 

  2. Barlow B, Santulli TV (1975) Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery 77(5):687–690

    PubMed  CAS  Google Scholar 

  3. Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR (2009) Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int 25(4):309–318

    Article  PubMed  Google Scholar 

  4. Kazez A, Küçükaydin N, Küçükaydin M, Kontaş O, Okur H, Doğan P (1997) A model of hypoxia-induced necrotizing enterocolitis: the role of distension. J Pediatr Surg 32(10):1466–1469

    Article  PubMed  CAS  Google Scholar 

  5. Meyer KF, Martins JL, Freitas Filho LG et al (2006) Evaluation of an experimental model of necrotizing enterocolitis in rats. Acta Cir Bras 21(2):113–118

    Article  PubMed  Google Scholar 

  6. Gallavan RH Jr, Parks DA, Jacobson ED (1989) Pathophysiology of gastrointestinal circulation. In: Wood JD (ed) Handbook of physiology, section 6: the gastrointestinal system, vol 1, Part 2. American Physiological Society, Bethesda, pp 1713–1732

    Google Scholar 

  7. MacDonald PH (2002) Ischaemic colitis. Best Pract Res Clin Gastroenterol 16(1):51–61

    Article  PubMed  CAS  Google Scholar 

  8. van Haren FM, Sleigh JW, Pickkers P, Van der Hoeven JG (2007) Gastrointestinal perfusion in septic shock. Anaesth Intensive Care 35(5):679–694

    PubMed  Google Scholar 

  9. Ratnaraj J, Kabon B, Talcott MR, Sessler DI, Kurz A (2004) Supplemental oxygen and carbon dioxide each increase subcutaneous and intestinal intramural oxygenation. Anesth Analg 99(1):207–211

    Article  PubMed  Google Scholar 

  10. Benaron DA, Parachikov IH, Friedland S et al (2004) Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy. Anesthesiology 100(6):1469–1475

    Article  PubMed  Google Scholar 

  11. Leung FW (2008) Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies. Dig Dis Sci 53(6):1669–1677

    Article  PubMed  Google Scholar 

  12. Hoff DA, Gregersen H, Hatlebakk JG (2009) Mucosal blood flow measurements using laser Doppler perfusion monitoring. World J Gastroenterol 15(2):198–203

    Article  PubMed  Google Scholar 

  13. Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82(1):245–289

    PubMed  CAS  Google Scholar 

  14. Binder HJ (2003) Intestinal fluid and electrolyte movement. In: Boron WF, Boulpaep EL (eds) Medical physiology. Saunders, Philadelphia, pp 931–946

    Google Scholar 

  15. Edmonds CJ, Marriott J (1968) Electrical potential and short-circuit current of an in vitro preparation of rat colon mucosa. J Physiol 194(2):479–494

    PubMed  CAS  Google Scholar 

  16. Lew VL (1970) Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum. J Physiol 206(3):509–528

    PubMed  CAS  Google Scholar 

  17. Saraví FD, Saldeña TA, Cincunegui LM (1996) Colon epithelial electrical responses to acute hypoxia and reoxygenation. Acta Gastroenterol Latinoam 26(3):159–165

    PubMed  Google Scholar 

  18. Mandel LJ, Balaban RS (1981) Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol 240(5):F357–F371

    PubMed  CAS  Google Scholar 

  19. Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21(9):793–798

    Article  PubMed  CAS  Google Scholar 

  20. Ardawi MS, Newsholme EA (1985) Fuel utilization in colonocytes of the rat. Biochem J 231(3):713–719

    PubMed  CAS  Google Scholar 

  21. Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C (1991) Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121(6):869–878

    PubMed  CAS  Google Scholar 

  22. Latella G, Caprilli R (1991) Metabolism of large bowel mucosa in health and disease. Int J Colorectal Dis 6(2):127–132

    Article  PubMed  CAS  Google Scholar 

  23. Del Castillo JR, Ricabarra B, Sulbarán-Carrasco MC (1991) Intermediary metabolism and its relationship with ion transport in isolated guinea pig colonic epithelial cells. Am J Physiol 260(3 Pt 1):C626–C634

    PubMed  Google Scholar 

  24. Durand J, Durand-Arczynska W, Wankmiller D (1988) Coupling of active sodium transport to oxidative metabolism in rabbit distal colon. J Physiol 396(1):55–64

    PubMed  CAS  Google Scholar 

  25. Saraví FD, Saldeña TA, Carrera CA, Ibañez JE, Cincunegui LM, Carra GE (2003) Oxygen consumption and chloride secretion in rat distal colon isolated mucosa. Dig Dis Sci 48(9):1767–1773

    Article  PubMed  Google Scholar 

  26. Saraví FD, Cincunegui LM, Saldeña TA, Carra GE, Ibáñez JE (2005) Increased oxygen consumption caused by cAMP- and Ca2+-mediated chloride secretion in rat distal colon. Acta Gastroenterol Latinoam 35(1):13–18

    PubMed  Google Scholar 

  27. Stack WA, Filipowicz B, Hawkey CJ (1996) Nitric oxide donating compounds stimulate colonic ion transport in vitro. Gut 39(1):93–99

    Article  PubMed  CAS  Google Scholar 

  28. McNamara B, Winter DC, Cuffe JE, O’Sullivan GC, Harvey BJ (1999) Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon. J Physiol 519(1):251–260

    Article  PubMed  CAS  Google Scholar 

  29. Taylor J, Hamilton KL, Butt AG (2001) HCO 3 potentiates the cAMP-dependent secretory response of the human distal colon through a DIDS-sensitive pathway. Pflügers Arch Eur J Physiol 442(2):256–262

    Article  CAS  Google Scholar 

  30. Suarez F, Furne J, Springfield J, Levitt M (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272(5):G1028–G1033

    PubMed  CAS  Google Scholar 

  31. Sahakian AB, Jee SR, Pimentel M (2010) Methane and the gastrointestinal tract. Dig Dis Sci 55(8):2135–2143

    Article  PubMed  Google Scholar 

  32. Saraví FD, Saldeña TA, Cincunegui LM, Carra GE (1997) Asymmetrical oxygen availability from serosal and luminal sides of rat distal colon epithelium. Rev Esp Fisiol 53(4):367–375

    PubMed  Google Scholar 

  33. Parsons DS, Powis G (1971) Some properties of a preparation of rat colon perfused in vitro through the vascular bed. J Physiol 217(3):641–663

    PubMed  CAS  Google Scholar 

  34. Bruewer M, Samarin S, Nusrat A (2006) Inflammatory bowel disease and the apical junctional complex. Ann NY Acad Sci 1072:242–252

    Article  PubMed  CAS  Google Scholar 

  35. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    Article  PubMed  CAS  Google Scholar 

  36. Anand RJ, Leaphart CL, Mollen KP, Hackam DJ (2007) The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 27(2):124–133

    Article  PubMed  CAS  Google Scholar 

  37. Lin PW, Nasr TR, Stoll BJ (2008) Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol 32(2):70–82

    Article  PubMed  Google Scholar 

  38. Taylor CT, Colgan SP (2007) Hypoxia and gastrointestinal disease. J Mol Med 85(12):1295–1300

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the collaboration and advice of Dr. Rolando Valent, Dr. Héctor Viotti, and Dr. Dino Sánchez De Simone from the Hospital Español and of Prof. Daniel Matus and Dr. Francisco Bettalemi from the Hospital Militar of Mendoza. This work was funded by a grant from the National University of Cuyo (Secretaría de Ciencia, Técnica y Posgrado).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando D. Saraví.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carra, G.E., Ibáñez, J.E. & Saraví, F.D. Electrogenic transport, oxygen consumption, and sensitivity to acute hypoxia of human colonic epithelium. Int J Colorectal Dis 26, 1205–1210 (2011). https://doi.org/10.1007/s00384-011-1215-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-011-1215-7

Keywords

Navigation