Skip to main content

Advertisement

Log in

Current concepts regarding the pathogenesis of necrotizing enterocolitis

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Necrotizing enterocolitis (NEC) is a devastating disease that predominantly affects premature neonates. The mortality associated with NEC has not changed appreciably over the past several decades. The underlying etiology of NEC remains elusive, although bacterial colonization of the gut, formula feeding, and perinatal stress have been implicated as putative risk factors. The disease is characterized by massive epithelial destruction, which results in gut barrier failure. The exact molecular and cellular mechanisms involved in this complex disease are poorly understood. Recent studies have provided significant insight into our understanding of the pathogenesis of NEC. Endogenous mediators such as prostanoids, cyclooxygenases, and nitric oxide may play a role in the development of gut barrier failure. Understanding the structural architecture of the gut barrier and the cellular mechanisms that are responsible for gut epithelial damage could lead to the development of novel diagnostic, prophylactic and therapeutic strategies in NEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Callaghan WM, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM (2006) The contribution of preterm birth to infant mortality rates in the United States. Pediatrics 118(4):1566–1573. doi:10.1542/peds.2006-0860

    Article  PubMed  Google Scholar 

  2. Kliegman RM, Fanaroff AA (1984) Necrotizing enterocolitis. N Engl J Med 310(17):1093–1103

    PubMed  CAS  Google Scholar 

  3. Updegrove K (2004) Necrotizing enterocolitis: the evidence for use of human milk in prevention and treatment. J Hum Lactation 20(3):335–339. doi:10.1177/0890334404266972

    Article  Google Scholar 

  4. Ostlie DJ, Spilde TL, St Peter SD et al (2003) Necrotizing enterocolitis in full-term infants. J Pediatr Surg 38(7):1039–1042. doi:10.1016/S0022-3468(03)00187-8

    Article  PubMed  Google Scholar 

  5. Lin PW, Stoll BJ (2006) Necrotising enterocolitis. Lancet 368(9543):1271–1283. doi:10.1016/S0140-6736(06)69525-1

    Article  PubMed  Google Scholar 

  6. Hsueh W et al (2003) Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 6(1):6–23

    Article  PubMed  Google Scholar 

  7. Kosloske AM (1994) Epidemiology of necrotizing enterocolitis. Acta Paediatr Suppl 396:2–7. doi:10.1111/j.1651-2227.1994.tb13232.x

    Article  PubMed  CAS  Google Scholar 

  8. Neu J (1996) Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 43(2):409–432. doi:10.1016/S0031-3955(05)70413-2

    Article  PubMed  CAS  Google Scholar 

  9. Krediet TG, van Lelyveld N, Vijlbrief DC et al (2003) Microbiological factors associated with neonatal necrotizing enterocolitis: protective effect of early antibiotic treatment. Acta Paediatr 92(10):1180–1182. doi:10.1080/08035250310005233

    Article  PubMed  CAS  Google Scholar 

  10. Kliegman RM (1990) Models of the pathogenesis of necrotizing enterocolitis. J Pediatr 117(1 Pt 2):S2–S5. doi:10.1016/S0022-3476(05)81123-0

    PubMed  CAS  Google Scholar 

  11. Martinez-Tallo E, Claure N, Bancalari E (1997) Necrotizing enterocolitis in full-term or near-term infants: risk factors. Biol Neonate 71(5):292–298

    Article  PubMed  CAS  Google Scholar 

  12. Henry MCMR (2004) Current issues in the management of necrotizing enterocolitis. Semin Perinatol 28:221–233. doi:10.1053/j.semperi.2004.03.010

    Article  PubMed  Google Scholar 

  13. Holman RC, Stehr-Green JK, Zelasky MT (1989) Necrotizing enterocolitis mortality in the United States, 1979–85. Am J Public Health 79(8):987–989. doi:10.2105/AJPH.79.8.987

    Article  PubMed  CAS  Google Scholar 

  14. Holman RC, Stoll BJ, Clarke MJ, Glass RI (1997) The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Public Health 87(12):2026–2031. doi:10.2105/AJPH.87.12.2026

    Article  PubMed  CAS  Google Scholar 

  15. Chung DH, Ethridge RT, Kim S et al (2001) Molecular mechanisms contributing to necrotizing enterocolitis. Ann Surg 233(6):835–842. doi:10.1097/00000658-200106000-00014

    Article  PubMed  CAS  Google Scholar 

  16. Blakely ML, Lally KP, McDonald S et al (2005) Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 241(6):984–989. doi:10.1097/01.sla.0000164181.67862.7f. Discussion 989–994

    Article  PubMed  Google Scholar 

  17. Rowe MI, Reblock KK, Kurkchubasche AG, Healey PJ (1994) Necrotizing enterocolitis in the extremely low birth weight infant. J Pediatr Surg 29(8):987–990. doi:10.1016/0022-3468(94)90264-X. Discussion 990–991

    Article  PubMed  CAS  Google Scholar 

  18. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S (2006) Births: final data for 2004. Natl Vital Stat Rep 55(1):1–101

    Google Scholar 

  19. Hintz SR, Kendrick DE, Stoll BJ et al (2005) Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115(3):696–703. doi:10.1542/peds.2004-0569

    Article  PubMed  Google Scholar 

  20. Balda MS, Matter K (2003) Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 13(6):310–318. doi:10.1016/S0962-8924(03)00105-3

    Article  PubMed  CAS  Google Scholar 

  21. Utech M, Bruwer M, Nusrat A (2006) Tight junctions and cell-cell interactions. Methods Mol Biol 341:185–195

    PubMed  CAS  Google Scholar 

  22. Weber CR, Turner JR (2007) Inflammatory bowel disease: is it really just another break in the wall? Gut 56(1):6–8. doi:10.1136/gut.2006.104182

    Article  PubMed  CAS  Google Scholar 

  23. Bisset WM, Watt JB, Rivers RP, Milla PJ (1988) Ontogeny of fasting small intestinal motor activity in the human infant. Gut 29(4):483–488. doi:10.1136/gut.29.4.483

    Article  PubMed  CAS  Google Scholar 

  24. Milla PJ (1996) Intestinal motility during ontogeny and intestinal pseudo-obstruction in children. Pediatr Clin North Am 43(2):511–532. doi:10.1016/S0031-3955(05)70418-1

    Article  PubMed  CAS  Google Scholar 

  25. Chu SH, Walker WA (1988) Development of the gastrointestinal mucosal barrier: changes in phospholipid head groups and fatty acid composition of intestinal microvillus membranes from newborn and adult rats. Pediatr Res 23(4):439–442. doi:10.1203/00006450-198804000-00020

    Article  PubMed  CAS  Google Scholar 

  26. Pang KY, Bresson JL, Walker WA (1983) Development of the gastrointestinal mucosal barrier. Evidence for structural differences in microvillus membranes from newborn and adult rabbits. Biochim Biophys Acta 727(1):201–208. doi:10.1016/0005-2736(83)90385-1

    Article  PubMed  CAS  Google Scholar 

  27. Roberton DM, Paganelli R, Dinwiddie R, Levinsky RJ (1982) Milk antigen absorption in the preterm and term neonate. Arch Dis Child 57(5):369–372. doi:10.1136/adc.57.5.369

    Article  PubMed  CAS  Google Scholar 

  28. Udall JN, Pang K, Fritze L, Kleinman R, Walker WA (1981) Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatr Res 15(3):241–244

    PubMed  CAS  Google Scholar 

  29. Thompson HSSN (1990) Could specific oral tolerance be a therapy for autoimmune disease? Immunol Today 11:9–369

    Google Scholar 

  30. Kamm KE, Stull JT (2001) Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276(7):4527–4530. doi:10.1074/jbc.R000028200

    Article  PubMed  CAS  Google Scholar 

  31. Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 169(6):1901–1909. doi:10.2353/ajpath.2006.060681

    Article  PubMed  CAS  Google Scholar 

  32. Han X, Fink MP, Delude RL (2003) Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19(3):229–237

    Article  PubMed  CAS  Google Scholar 

  33. Guo Y, Ramachandran C, Satpathy M, Srinivas SP (2007) Histamine-induced myosin light chain phosphorylation breaks down the barrier integrity of cultured corneal epithelial cells. Pharm Res 24(10):1824–1833. doi:10.1007/s11095-007-9309-1

    Article  PubMed  CAS  Google Scholar 

  34. McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228. doi:10.1002/jcp.21114

    Article  PubMed  CAS  Google Scholar 

  35. Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY (2007) Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292(2):G590–G598. doi:10.1152/ajpgi.00252.2006

    Article  PubMed  CAS  Google Scholar 

  36. Clayburgh DR, Rosen S, Witkowski ED et al (2004) A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem 279(53):55506–55513. doi:10.1074/jbc.M408822200

    Article  PubMed  CAS  Google Scholar 

  37. Turner JR, Rill BK, Carlson SL et al (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273(4 Pt 1):C1378–C1385

    PubMed  CAS  Google Scholar 

  38. Schwarz BT, Wang F, Shen L et al (2007) LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 132(7):2383–2394. doi:10.1053/j.gastro.2007.02.052

    Article  PubMed  CAS  Google Scholar 

  39. Turner JR, Angle JM, Black ED, Joyal JL, Sacks DB, Madara JL (1999) PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol 277(3 Pt 1):C554–C562

    PubMed  CAS  Google Scholar 

  40. Ye D, Ma I, Ma TY (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 290(3):G496–G504. doi:10.1152/ajpgi.00318.2005

    Article  PubMed  CAS  Google Scholar 

  41. Peter CS, Feuerhahn M, Bohnhorst B et al (1999) Necrotising enterocolitis: is there a relationship to specific pathogens? Eur J Pediatr 158(1):67–70. doi:10.1007/s004310051012

    Article  PubMed  CAS  Google Scholar 

  42. Fast C, Rosegger H (1994) Necrotizing enterocolitis prophylaxis: oral antibiotics and lyophilized enterobacteria vs oral immunoglobulins. Acta Paediatr Suppl 396:86–90. doi:10.1111/j.1651-2227.1994.tb13253.x. See comments

    Article  PubMed  CAS  Google Scholar 

  43. Lin HC, Su BH, Chen AC et al (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115(1):1–4

    PubMed  Google Scholar 

  44. Albanese CT, Rowe MI (1998) Necrotizing Enterocolitis. In: O’Neill JA, Rowe RI, Grosfeld JL, Fonkalsrud EW, Coran AG (eds) Pediatric surgery, 5th edn. Mosby, St. Louis, pp 1555–1573

    Google Scholar 

  45. Ballance WA, Dahms BB, Shenker N, Kliegman RM (1990) Pathology of neonatal necrotizing enterocolitis: a ten-year experience. J Pediatr 117(1 Pt 2):S6–S13. doi:10.1016/S0022-3476(05)81124-2

    PubMed  CAS  Google Scholar 

  46. Mallick IH, Yang W, Winslet MC, Seifalian AM (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49(9):1359–1377. doi:10.1023/B:DDAS.0000042232.98927.91

    Article  PubMed  CAS  Google Scholar 

  47. Dyess DL, Peeples GL, Ardell JL et al (1993) Indomethacin-induced blood flow distribution in premature and full-term piglets. J Pediatr Surg 28(10):1396–1400. doi:10.1016/S0022-3468(05)80334-3

    Article  PubMed  CAS  Google Scholar 

  48. Lee JS, Polin RA (2003) Treatment and prevention of necrotizing enterocolitis. Semin Neonatol 8(6):449–459. doi:10.1016/S1084-2756(03)00123-4

    Article  PubMed  Google Scholar 

  49. Hunter CJ, Singamsetty VK, Chokshi NK et al (2008) Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 198(4):586–593. doi:10.1086/590186

    Article  PubMed  CAS  Google Scholar 

  50. Caplan MS (2003) Pathophysiology and prevention of neonatal necrotizing enterocolitis, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  51. Hentges DJ (1993) The anaerobic microflora of the human body. Clin Infect Dis 16(Suppl 4):S175–S180

    PubMed  Google Scholar 

  52. Cooperstock MSZA (1983) Intestinal flora of infants. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic press, New York, pp 79–100

    Google Scholar 

  53. Powell J, Bureau MA, Pare C, Gaildry ML, Cabana D, Patriquin H (1980) Necrotizing enterocolitis. Epidemic following an outbreak of Enterobacter cloacae type 3305573 in a neonatal intensive care unit. Am J Dis Child 134(12):1152–1154

    PubMed  CAS  Google Scholar 

  54. Hill HR, Hunt CE, Matsen JM (1974) Nosocomial colonization with Klebsiella, type 26, in a neonatal intensive-care unit associated with an outbreak of sepsis, meningitis, and necrotizing enterocolitis. J Pediatr 85(3):415–419. doi:10.1016/S0022-3476(74)80133-2

    Article  PubMed  CAS  Google Scholar 

  55. Speer ME, Taber LH, Yow MD, Rudolph AJ, Urteaga J, Waller S (1976) Fulminant neonatal sepsis and necrotizing enterocolitis associated with a “nonenteropathogenic” strain of Escherichia coli. J Pediatr 89(1):91–95. doi:10.1016/S0022-3476(76)80939-0

    Article  PubMed  CAS  Google Scholar 

  56. Millar MR, MacKay P, Levene M, Langdale V, Martin C (1992) Enterobacteriaceae and neonatal necrotising enterocolitis. Arch Dis Child 67(1 Spec No):53–56

    Article  PubMed  CAS  Google Scholar 

  57. Liu RX, Johnson A (1984) Necrotizing enterocolitis with epidemic Staphylococcus in a neonatal intensive care unit. Chin Med J (Engl) 97(4):278–282

    CAS  Google Scholar 

  58. Cashore WJ, Peter G, Lauermann M, Stonestreet BS, Oh W (1981) Clostridia colonization and clostridial toxin in neonatal necrotizing enterocolitis. J Pediatr 98(2):308–311. doi:10.1016/S0022-3476(81)80667-1

    Article  PubMed  CAS  Google Scholar 

  59. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3(2):169–176. doi:10.1038/nri1004

    Article  PubMed  CAS  Google Scholar 

  60. Takeda K, Akira S (2003) Toll receptors and pathogen resistance. Cell Microbiol 5(3):143–153. doi:10.1046/j.1462-5822.2003.00264.x

    Article  PubMed  CAS  Google Scholar 

  61. Chabot S, Wagner JS, Farrant S, Neutra MR (2006) TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 176(7):4275–4283

    PubMed  CAS  Google Scholar 

  62. Jilling T, Simon D, Lu J et al (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177(5):3273–3282

    PubMed  CAS  Google Scholar 

  63. Caplan MS, Simon D, Jilling T (2005) The role of PAF, TLR, and the inflammatory response in neonatal necrotizing enterocolitis. Semin Pediatr Surg 14(3):145–151. doi:10.1053/j.sempedsurg.2005.05.002

    Article  PubMed  Google Scholar 

  64. Panigrahi P, Bamford P, Horvath K, Morris JG Jr, Gewolb IH (1996) Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr Res 40(3):415–421. doi:10.1203/00006450-199609000-00009

    Article  PubMed  CAS  Google Scholar 

  65. Deitch EA, Berg R, Specian R (1987) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122(2):185–190

    PubMed  CAS  Google Scholar 

  66. Caplan MS, Kelly A, Hsueh W (1992) Endotoxin and hypoxia-induced intestinal necrosis in rats: the role of platelet activating factor. Pediatr Res 31(5):428–434. doi:10.1203/00006450-199205000-00002

    Article  PubMed  CAS  Google Scholar 

  67. Musemeche C, Caplan M, Hsueh W, Sun X, Kelly A (1991) Experimental necrotizing enterocolitis: the role of polymorphonuclear neutrophils. J Pediatr Surg 26(9):1047–1049. doi:10.1016/0022-3468(91)90671-F. Discussion 1049–1450

    Article  PubMed  CAS  Google Scholar 

  68. Hackam DJ, Upperman JS, Grishin A, Ford HR (2005) Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 14(1):49–57. doi:10.1053/j.sempedsurg.2004.10.025

    Article  PubMed  Google Scholar 

  69. Gribar SC, Sodhi CP, Richardson WM et al (2009) Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 182(1):636–646

    PubMed  CAS  Google Scholar 

  70. Osanai T, Fujiwara N, Saitoh M et al (2002) Relationship between salt intake, nitric oxide and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease. Blood Purif 20(5):466–468. doi:10.1159/000063555

    Article  PubMed  CAS  Google Scholar 

  71. Chang K, Lee SJ, Cheong I et al (2004) Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB. Exp Mol Med 36(4):311–324

    PubMed  CAS  Google Scholar 

  72. Yu ZXX, Kone BC (2005) Expression profile of a human inducible nitric oxide synthase promoter reporter in transgenic mice during endotoxemia. Am J Physiol Renal Physiol 288:F214–F220. doi:10.1152/ajprenal.00258.2004

    Article  PubMed  CAS  Google Scholar 

  73. Beckman JS (1990) Ischaemic injury mediator. Nature 345(6270):27–28. doi:10.1038/345027b0

    Article  PubMed  CAS  Google Scholar 

  74. Beckman JS (1994) Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann N Y Acad Sci 738:69–75

    PubMed  CAS  Google Scholar 

  75. Chokshi NK, Guner YS, Hunter CJ, Upperman JS, Grishin A, Ford HR (2008) The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin Perinatol 32(2):92–99. doi:10.1053/j.semperi.2008.01.002

    Article  PubMed  Google Scholar 

  76. Upperman JS, Potoka D, Grishin A, Hackam D, Zamora R, Ford HR (2005) Mechanisms of nitric oxide-mediated intestinal barrier failure in necrotizing enterocolitis. Semin Pediatr Surg 14(3):159–166. doi:10.1053/j.sempedsurg.2005.05.004

    Article  PubMed  Google Scholar 

  77. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312. doi:10.1126/science.281.5381.1309

    Article  PubMed  CAS  Google Scholar 

  78. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50. doi:10.1038/34112

    Article  PubMed  CAS  Google Scholar 

  79. Potoka DA, Upperman JS, Zhang XR et al (2003) Peroxynitrite inhibits enterocyte proliferation and modulates Src kinase activity in vitro. Am J Physiol Gastrointest Liver Physiol 285(5):G861–G869

    PubMed  CAS  Google Scholar 

  80. Ford HR (2006) Mechanism of nitric oxide-mediated intestinal barrier failure: insight into the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 41(2):294–299. doi:10.1016/j.jpedsurg.2005.11.003

    Article  PubMed  Google Scholar 

  81. Mannick EE, Bravo LE, Zarama G et al (1996) Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res 56(14):3238–3243

    PubMed  CAS  Google Scholar 

  82. Boughton-Smith NK, Evans SM, Hawkey CJ et al (1993) Nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Lancet 342(8867):338–340. doi:10.1016/0140-6736(93)91476-3

    Article  PubMed  CAS  Google Scholar 

  83. Singer II, Kawka DW, Scott S et al (1996) Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111(4):871–885. doi:10.1016/S0016-5085(96)70055-0

    Article  PubMed  CAS  Google Scholar 

  84. Sorrells DL, Friend C, Koltuksuz U et al (1996) Inhibition of nitric oxide with aminoguanidine reduces bacterial translocation after endotoxin challenge in vivo. Arch Surg 131(11):1155–1163

    PubMed  CAS  Google Scholar 

  85. MacMicking JD, Nathan C, Hom G et al (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81(4):641–650. doi:10.1016/0092-8674(95)90085-3

    Article  PubMed  CAS  Google Scholar 

  86. Mishima S, Xu D, Lu Q, Deitch EA (1997) Bacterial translocation is inhibited in inducible nitric oxide synthase knockout mice after endotoxin challenge but not in a model of bacterial overgrowth. Arch Surg 132(11):1190–1195

    PubMed  CAS  Google Scholar 

  87. Park JY, Pillinger MH, Abramson SB (2006) Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 119(3):229–240. doi:10.1016/j.clim.2006.01.016

    Article  PubMed  CAS  Google Scholar 

  88. Cetin SLC, Ford H et al. (2005) HMBG1 impairs enterocyte migration by disrupting the actin cytoskeleton and inhibiting RHO-GTPase. In: 28th annual conference on shock. San Marco, FL, 2005

  89. Loftin CD, Tiano HF, Langenbach R (2002) Phenotypes of the COX-deficient mice indicate physiological and pathophysiological roles for COX-1 and COX-2. Prostaglandins Other Lipid Mediat 68–69:177–185. doi:10.1016/S0090-6980(02)00028-X

    Article  PubMed  Google Scholar 

  90. Tessner TG, Muhale F, Riehl TE, Anant S, Stenson WF (2004) Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 114(11):1676–1685

    PubMed  CAS  Google Scholar 

  91. Nataraj C, Thomas DW, Tilley SL et al (2001) Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. J Clin Invest 108(8):1229–1235

    PubMed  CAS  Google Scholar 

  92. Biondi C, Ferretti ME, Pavan B et al (2006) Prostaglandin E2 inhibits proliferation and migration of HTR-8/SVneo cells, a human trophoblast-derived cell line. Placenta 27(6–7):592–601. doi:10.1016/j.placenta.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  93. Buchanan FG, Wang D, Bargiacchi F, DuBois RN (2003) Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278(37):35451–35457. doi:10.1074/jbc.M302474200

    Article  PubMed  CAS  Google Scholar 

  94. Robert A, Schultz JR, Nezamis JE, Lancaster C (1976) Gastric antisecretory and antiulcer properties of PGE2, 15-methyl PGE2, and 16, 16-dimethyl PGE2. Intravenous, oral and intrajejunal administration. Gastroenterology 70(3):359–370

    PubMed  CAS  Google Scholar 

  95. Dascombe MJ (1985) The pharmacology of fever. Prog Neurobiol 25(4):327–373. doi:10.1016/0301-0082(85)90019-X

    Article  PubMed  CAS  Google Scholar 

  96. Lazarus M (2006) The differential role of prostaglandin E2 receptors EP3 and EP4 in regulation of fever. Mol Nutr Food Res 50(4–5):451–455. doi:10.1002/mnfr.200500207

    Article  PubMed  CAS  Google Scholar 

  97. Lee Y, Rodriguez C, Dionne RA (2005) The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des 11(14):1737–1755. doi:10.2174/1381612053764896

    Article  PubMed  CAS  Google Scholar 

  98. Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH (2004) Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 36(7):1187–1205. doi:10.1016/j.biocel.2003.08.006

    Article  PubMed  CAS  Google Scholar 

  99. Wallace JL (2006) Commonality of defensive roles of COX-2 in the lung and gut. Am J Pathol 168(4):1060–1063. doi:10.2353/ajpath.2006.060023

    Article  PubMed  CAS  Google Scholar 

  100. Whittle BJ (2004) Mechanisms underlying intestinal injury induced by anti-inflammatory COX inhibitors. Eur J Pharmacol 500(1–3):427–439. doi:10.1016/j.ejphar.2004.07.042

    Article  PubMed  CAS  Google Scholar 

  101. Peng S, Duggan A (2005) Gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. Expert Opin Drug Saf 4(2):157–169. doi:10.1517/14740338.4.2.157

    Article  PubMed  CAS  Google Scholar 

  102. Grosfeld JL, Chaet M, Molinari F et al (1996) Increased risk of necrotizing enterocolitis in premature infants with patent ductus arteriosus treated with indomethacin. Ann Surg 224(3):350–355. doi:10.1097/00000658-199609000-00011. Discussion 355–357

    Article  PubMed  CAS  Google Scholar 

  103. Tanabe T, Tohnai N (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 68–69:95–114. doi:10.1016/S0090-6980(02)00024-2

    Article  PubMed  Google Scholar 

  104. Grishin AV, Wang J, Potoka DA et al (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176(1):580–588

    PubMed  CAS  Google Scholar 

  105. Grishin A, Wang J, Hackam D et al (2004) p38 MAP kinase mediates endotoxin-induced expression of cyclooxygenase-2 in enterocytes. Surgery 136(2):329–335. doi:10.1016/j.surg.2004.05.008

    Article  PubMed  Google Scholar 

  106. Bury RG, Tudehope D (2001) Enteral antibiotics for preventing necrotizing enterocolitis in low birthweight or preterm infants. Cochrane Database Syst Rev (1):CD000405

  107. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12(3):129–134. doi:10.1016/j.tim.2004.01.001

    Article  PubMed  CAS  Google Scholar 

  108. Bin-Nun A, Bromiker R, Wilschanski M et al (2005) Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 147(2):192–196. doi:10.1016/j.jpeds.2005.03.054

    Article  PubMed  Google Scholar 

  109. Foligne B, Grangette C, Pot B (2005) Probiotics in IBD: mucosal and systemic routes of administration may promote similar effects. Gut 54(5):727–728

    PubMed  CAS  Google Scholar 

  110. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118. doi:10.1016/j.cell.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  111. Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E (2005) Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr 147(2):186–191. doi:10.1016/j.jpeds.2005.03.053

    Article  PubMed  Google Scholar 

  112. Lee J, Mo JH, Katakura K et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12):1327–1336. doi:10.1038/ncb1500

    Article  PubMed  CAS  Google Scholar 

  113. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115(3):695–702

    PubMed  CAS  Google Scholar 

  114. Rumio C, Besusso D, Palazzo M et al (2004) Degranulation of paneth cells via toll-like receptor 9. Am J Pathol 165(2):373–381

    PubMed  CAS  Google Scholar 

  115. Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374. doi:10.1053/j.gastro.2007.02.056

    Article  PubMed  CAS  Google Scholar 

  116. Buchmiller TL, Shaw KS, Lam ML, Stokes R, Diamond JS, Fonkalsrud EW (1994) Effect of prenatal dexamethasone administration: fetal rabbit intestinal nutrient uptake and disaccharidase development. J Surg Res 57(2):274–279. doi:10.1006/jsre.1994.1144

    Article  PubMed  CAS  Google Scholar 

  117. Israel EJ, Schiffrin EJ, Carter EA, Freiberg E, Walker WA (1990) Prevention of necrotizing enterocolitis in the rat with prenatal cortisone. Gastroenterology 99(5):1333–1338

    PubMed  CAS  Google Scholar 

  118. Israel EJ, Schiffrin EJ, Carter EA, Frieberg E, Walker WA (1991) Cortisone strengthens the intestinal mucosal barrier in a rodent necrotizing enterocolitis model. Adv Exp Med Biol 310:375–380

    PubMed  CAS  Google Scholar 

  119. Bauer CR, Morrison JC, Poole WK et al (1984) A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 73(5):682–688

    PubMed  CAS  Google Scholar 

  120. Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 97(1):11–25

    PubMed  CAS  Google Scholar 

  121. Barlow B, Santulli TV (1975) Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery 77(5):687–690

    PubMed  CAS  Google Scholar 

  122. Connolly JM, Rose DP (1988) Epidermal growth factor-like proteins in breast fluid and human milk. Life Sci 42(18):1751–1756. doi:10.1016/0024-3205(88)90041-0

    Article  PubMed  CAS  Google Scholar 

  123. Carpenter G (1980) Epidermal growth factor is a major growth-promoting agent in human milk. Science 210(4466):198–199. doi:10.1126/science.6968093

    Article  PubMed  CAS  Google Scholar 

  124. Warner BW, Warner BB (2005) Role of epidermal growth factor in the pathogenesis of neonatal necrotizing enterocolitis. Semin Pediatr Surg 14(3):175–180. doi:10.1053/j.sempedsurg.2005.05.006

    Article  PubMed  Google Scholar 

  125. Dvorak B, Halpern MD, Holubec H et al (2002) Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am J Physiol Gastrointest Liver Physiol 282(1):G156–G164

    PubMed  CAS  Google Scholar 

  126. Warner BB, Ryan AL, Seeger K, Leonard AC, Erwin CR, Warner BW (2007) Ontogeny of salivary epidermal growth factor and necrotizing enterocolitis. J Pediatr 150(4):358–363. doi:10.1016/j.jpeds.2006.11.059

    Article  PubMed  CAS  Google Scholar 

  127. Jin K, Mao XO, Sun Y et al (2002) Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci 22(13):5365–5373

    PubMed  CAS  Google Scholar 

  128. Cribbs RK, Harding PA, Luquette MH, Besner GE (2002) Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing. J Burn Care Rehabil 23(2):116–125. doi:10.1097/00004630-200203000-00008

    Article  PubMed  Google Scholar 

  129. Marikovsky M, Breuing K, Liu PY et al (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci USA 90(9):3889–3893. doi:10.1073/pnas.90.9.3889

    Article  PubMed  CAS  Google Scholar 

  130. Feng J, Besner GE (2007) Heparin-binding epidermal growth factor-like growth factor promotes enterocyte migration and proliferation in neonatal rats with necrotizing enterocolitis. J Pediatr Surg 42(1):214–220. doi:10.1016/j.jpedsurg.2006.09.055

    Article  PubMed  Google Scholar 

  131. Eibl MM, Wolf HM, Furnkranz H, Rosenkranz A (1988) Prevention of necrotizing enterocolitis in low-birth-weight infants by IgA–IgG feeding. N Engl J Med 319(1):1–7

    Article  PubMed  CAS  Google Scholar 

  132. Foster J, Cole M (2001) Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth-weight neonates. Cochrane Database Syst Rev (3):CD001816

  133. Carlson SE, Montalto MB, Ponder DL, Werkman SH, Korones SB (1998) Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr Res 44(4):491–498. doi:10.1203/00006450-199810000-00005

    Article  PubMed  CAS  Google Scholar 

  134. Fewtrell MS, Morley R, Abbott RA et al (2002) Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 110(1 Pt 1):73–82. doi:10.1542/peds.110.1.73

    Article  PubMed  Google Scholar 

  135. Caplan MS, Russell T, Xiao Y, Amer M, Kaup S, Jilling T (2001) Effect of polyunsaturated fatty acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC) in a neonatal rat model. Pediatr Res 49(5):647–652. doi:10.1203/00006450-200105000-00007

    Article  PubMed  CAS  Google Scholar 

  136. Lu J, Jilling T, Li D, Caplan MS (2007) Polyunsaturated fatty acid supplementation alters proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Pediatr Res 61(4):427–432. doi:10.1203/pdr.0b013e3180332ca5

    Article  PubMed  CAS  Google Scholar 

  137. Lee JY, Zhao L, Youn HS et al (2004) Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 279(17):16971–16979. doi:10.1074/jbc.M312990200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri R. Ford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrosyan, M., Guner, Y.S., Williams, M. et al. Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int 25, 309–318 (2009). https://doi.org/10.1007/s00383-009-2344-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-009-2344-8

Keywords

Navigation