Skip to main content
Log in

Interaction between CTLA4 gene and IBD5 locus in Hungarian Crohn’s disease patients

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Backgrounds and aims

The IGR2198a_1 and IGR2096a_1 variants of the IBD5 region were found to be associated with Crohn’s disease (CD) in the Hungarian population, while IGR2230a_1 does not seem to confer risk for the disease. In the present study, our aim was to investigate the statistical interaction of these three IBD5 polymorphisms with the +49 A/G substitution within the cytotoxic T lymphocyte antigen-4 (CTLA4) gene, detected previously as neutral gene variant in Hungarian IBD patients.

Methods

A total of 305 unrelated subjects with CD and 310 healthy controls were genotyped with PCR-RFLP methods.

Results

In contrast with single gene effects, after genotype stratification, the IGR2198a_1 C and IGR2096a_1 T variants were found to confer susceptibility only in subjects with CTLA4 +49 AA genotype (P = 0.008; OR = 1.86 and P = 0.016; OR = 1.74, respectively), for IGR2230a_1 no such effect on disease risk could be demonstrated.

Conclusion

Analysis of specific genotype combinations unfolded a possible association between the CTLA4 +49 A/G substitution and two of the observed IBD5 variants with respect to disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82

    Article  PubMed  Google Scholar 

  2. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  PubMed  CAS  Google Scholar 

  3. Magyari L, Farago B, Bene J et al (2007) No association of the cytotoxic T-lymphocyte associated gene CTLA4 +49A/G polymorphisms with Crohn’s disease and ulcerative colitis in Hungarian population samples. World J Gastroenterol 13:2205–2208

    PubMed  Google Scholar 

  4. Talian G, Lakner L, Bene J et al (2009) Plasma carnitine ester profiles in Crohn’s disease and ulcerative colitis patients with different IGR2230a_1 genotypes. Int J Immunogenet 36:329–335

    Article  PubMed  CAS  Google Scholar 

  5. Lakner L, Csongei V, Sarlos P et al (2009) IGR2096a_1 T and IGR2198a_1 C alleles on IBD5 locus of chromosome 5q31 region confer risk for Crohn’s disease in Hungarian patients. Int J Colorectal Dis 24:503–507

    Article  PubMed  Google Scholar 

  6. Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 70:461–471

    Article  PubMed  Google Scholar 

  7. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211

    Article  PubMed  CAS  Google Scholar 

  8. Safrany E, Melegh B (2009) Functional variants of the interleukin-23 receptor gene in non-gastrointestinal autoimmune diseases. Curr Med Chem 16:3766–3774

    Article  PubMed  CAS  Google Scholar 

  9. Farago B, Magyari L, Safrany E et al (2008) Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann Rheum Dis 67:248–250

    Article  PubMed  CAS  Google Scholar 

  10. Cummings JR, Cooney R, Pathan S et al (2007) Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis 13:941–946

    Article  PubMed  Google Scholar 

  11. Prescott NJ, Fisher SA, Franke A et al (2007) A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology 132:1665–1671

    Article  PubMed  CAS  Google Scholar 

  12. Glas J, Konrad A, Schmechel S et al (2008) The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn’s disease in the German population. Am J Gastroenterol 103:682–691

    Article  PubMed  CAS  Google Scholar 

  13. Latiano A, Palmieri O, Valvano MR et al (2008) Replication of interleukin 23 receptor and autophagy-related 16-like 1 association in adult- and pediatric-onset inflammatory bowel disease in Italy. World J Gastroenterol 14:4643–4651

    Article  PubMed  CAS  Google Scholar 

  14. Roberts RL, Gearry RB, Hollis-Moffatt JE et al (2007) IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am J Gastroenterol 102:2754–2761

    Article  PubMed  CAS  Google Scholar 

  15. Glas J, Seiderer J, Wetzke M et al (2007) rs1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS ONE 2:e819

    Article  PubMed  Google Scholar 

  16. Latiano A, Palmieri O, Valvano RM et al (2006) Contribution of IBD5 locus to clinical features of IBD patients. Am J Gastroenterol 101:318–325

    Article  PubMed  CAS  Google Scholar 

  17. Weersma RK, Stokkers PC, van Bodegraven AA et al (2009) Molecular prediction of disease risk and severity in a large Dutch Crohn’s disease cohort. Gut 58:388–395

    Article  PubMed  CAS  Google Scholar 

  18. Csongei V, Jaromi L, Safrany E et al (2010) Interaction of the major inflammatory bowel disease susceptibility alleles in Crohn’s disease patients. World J Gastroenterol 16:176–183

    Article  PubMed  CAS  Google Scholar 

  19. Okazaki T, Wang MH, Rawsthorne P et al (2008) Contributions of IBD5, IL23R, ATG16L1, and NOD2 to Crohn’s disease risk in a population-based case-control study: evidence of gene-gene interactions. Inflamm Bowel Dis 14:1528–1541

    Article  PubMed  Google Scholar 

  20. Petermann I, Huebner C, Browning BL et al (2009) Interactions among genes influencing bacterial recognition increase IBD risk in a population-based New Zealand cohort. Hum Immunol 70:440–446

    Article  PubMed  CAS  Google Scholar 

  21. McGovern DP, Rotter JI, Mei L et al (2009) Genetic epistasis of IL23/IL17 pathway genes in Crohn’s disease. Inflamm Bowel Dis 15:883–889

    Article  PubMed  Google Scholar 

  22. Marquez A, Varade J, Robledo G et al (2009) Specific association of a CLEC16A/KIAA0350 polymorphism with NOD2/CARD15(−) Crohn’s disease patients. Eur J Hum Genet 17:1304–1308

    Article  PubMed  CAS  Google Scholar 

  23. Machida H, Tsukamoto K, Wen CY et al (2005) Association of polymorphic alleles of CTLA4 with inflammatory bowel disease in the Japanese. World J Gastroenterol 11:4188–4193

    PubMed  CAS  Google Scholar 

  24. Ben Alaya W, Sfar I, Aouadi H et al (2009) Association between CTLA-4 gene promoter (49 A/G) in exon 1 polymorphisms and inflammatory bowel disease in the Tunisian population. Saudi J Gastroenterol 15:29–34

    Article  PubMed  Google Scholar 

  25. Xia B, Crusius JB, Wu J, Zwiers A, van Bodegraven AA, Pena AS (2002) CTLA4 gene polymorphisms in Dutch and Chinese patients with inflammatory bowel disease. Scand J Gastroenterol 37:1296–1300

    Article  PubMed  CAS  Google Scholar 

  26. Hou W, Xia B, Yuan A, Li J, Yang Z, Mao L (2005) CTLA-4 gene polymorphisms in Chinese patients with ulcerative colitis. Inflamm Bowel Dis 11:653–656

    Article  PubMed  Google Scholar 

  27. Lankarani KB, Karbasi A, Kalantari T et al (2006) Analysis of cytotoxic T lymphocyte associated antigen 4 gene polymorphisms in patients with ulcerative colitis. J Gastroenterol Hepatol 21:449–453

    Article  PubMed  CAS  Google Scholar 

  28. Hradsky O, Dusatkova P, Lenicek M et al (2010) The CTLA4 variants may interact with the IL23R- and NOD2-conferred risk in the development of Crohn’s disease. BMC Med Genet 11:91

    Article  PubMed  Google Scholar 

  29. Abe T, Takino H, Yamasaki H et al (1999) CTLA4 gene polymorphism correlates with the mode of onset and presence of ICA512 Ab in Japanese type 1 diabetes. Diabetes Res Clin Pract 46:169–175

    Article  PubMed  CAS  Google Scholar 

  30. Cinek O, Drevinek P, Sumnik Z et al (2002) The CTLA4 +49 A/G dimorphism is not associated with type 1 diabetes in Czech children. Eur J Immunogenet 29:219–222

    Article  PubMed  CAS  Google Scholar 

  31. Donner H, Rau H, Walfish PG et al (1997) CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus. J Clin Endocrinol Metab 82:143–146

    Article  PubMed  CAS  Google Scholar 

  32. Lee YJ, Huang FY, Lo FS et al (2000) Association of CTLA4 gene A-G polymorphism with type 1 diabetes in Chinese children. Clin Endocrinol 52:153–157

    Article  CAS  Google Scholar 

  33. Nistico L, Buzzetti R, Pritchard LE et al (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 5:1075–1080

    Article  PubMed  CAS  Google Scholar 

  34. Osei-Hyiaman D, Hou L, Zhiyin R et al (2001) Association of a novel point mutation (C159G) of the CTLA4 gene with type 1 diabetes in West Africans but not in Chinese. Diabetes 50:2169–2171

    Article  PubMed  CAS  Google Scholar 

  35. Zalloua PA, Abchee A, Shbaklo H et al (2004) Patients with early onset of type 1 diabetes have significantly higher GG genotype at position 49 of the CTLA4 gene. Hum Immunol 65:719–724

    Article  PubMed  CAS  Google Scholar 

  36. Lemos MC, Coutinho E, Gomes L et al (2009) The CTLA4 +49 A/G polymorphism is not associated with susceptibility to type 1 diabetes mellitus in the Portuguese population. Int J Immunogenet 36:193–195

    Article  PubMed  CAS  Google Scholar 

  37. Borhani HA, Ghahramani S, Azarpira N, Pourjafar M, Nikseresht AR (2008) Cytotoxic T lymphocyte associated antigen-4 exon 1 A/G polymorphism in Iranian patients with multiple sclerosis. Eur J Neurol 15:862–864

    Article  Google Scholar 

  38. Heggarty S, Suppiah V, Silversides J et al (2007) CTLA4 gene polymorphisms and multiple sclerosis in Northern Ireland. J Neuroimmunol 187:187–191

    Article  PubMed  CAS  Google Scholar 

  39. Yousefipour G, Erfani N, Momtahan M, Moghaddasi H, Ghaderi A (2009) CTLA4 exon 1 and promoter polymorphisms in patients with multiple sclerosis. Acta Neurol Scand 120:424–429

    Article  PubMed  CAS  Google Scholar 

  40. Bilinska M, Frydecka I, Noga L et al (2004) Progression of multiple sclerosis is associated with exon 1 CTLA-4 gene polymorphism. Acta Neurol Scand 110:67–71

    Article  PubMed  CAS  Google Scholar 

  41. Heward JM, Allahabadia A, Armitage M et al (1999) The development of Graves’ disease and the CTLA-4 gene on chromosome 2q33. J Clin Endocrinol Metab 84:2398–2401

    Article  PubMed  CAS  Google Scholar 

  42. Kinjo Y, Takasu N, Komiya I et al (2002) Remission of Graves’ hyperthyroidism and A/G polymorphism at position 49 in exon 1 of cytotoxic T lymphocyte-associated molecule-4 gene. J Clin Endocrinol Metab 87:2593–2596

    Article  PubMed  CAS  Google Scholar 

  43. Kouki T, Gardine CA, Yanagawa T, DeGroot LJ (2002) Relation of three polymorphisms of the CTLA-4 gene in patients with Graves’ disease. J Endocrinol Investig 25:208–213

    CAS  Google Scholar 

  44. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  CAS  Google Scholar 

  45. Wang PW, Liu RT, Juo SH et al (2004) Cytotoxic T lymphocyte-associated molecule-4 polymorphism and relapse of Graves’ hyperthyroidism after antithyroid withdrawal. J Clin Endocrinol Metab 89:169–173

    Article  PubMed  CAS  Google Scholar 

  46. Donner H, Braun J, Seidl C et al (1997) Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J Clin Endocrinol Metab 82:4130–4132

    Article  PubMed  CAS  Google Scholar 

  47. Gonzalez-Escribano MF, Rodriguez R, Valenzuela A, Garcia A, Garcia-Lozano JR, Nunez-Roldan A (1999) CTLA4 polymorphisms in Spanish patients with rheumatoid arthritis. Tissue Antigens 53:296–300

    Article  PubMed  CAS  Google Scholar 

  48. Lee CS, Lee YJ, Liu HF et al (2003) Association of CTLA4 gene A-G polymorphism with rheumatoid arthritis in Chinese. Clin Rheumatol 22:221–224

    Article  PubMed  Google Scholar 

  49. Barreto M, Santos E, Ferreira R et al (2004) Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet 12:620–626

    Article  PubMed  CAS  Google Scholar 

  50. Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E, Mougenot JF, Bach JF, Caillat-Zucman S (1998) CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut 43:187–189

    Article  PubMed  CAS  Google Scholar 

  51. Naluai AT, Nilsson S, Samuelsson L et al (2000) The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens 56:350–355

    Article  PubMed  CAS  Google Scholar 

  52. King AL, Moodie SJ, Fraser JS et al (2003) Coeliac disease: investigation of proposed causal variants in the CTLA4 gene region. Eur J Immunogenet 30:427–432

    Article  PubMed  CAS  Google Scholar 

  53. Martin-Pagola A, Perez dN, Vitoria JC et al (2003) No association of CTLA4 gene with celiac disease in the Basque population. J Pediatr Gastroenterol Nutr 37:142–145

    Article  PubMed  CAS  Google Scholar 

  54. Popat S, Hearle N, Wixey J et al (2002) Analysis of the CTLA4 gene in Swedish coeliac disease patients. Scand J Gastroenterol 37:28–31

    Article  PubMed  CAS  Google Scholar 

  55. Popat S, Hearle N, Hogberg L et al (2002) Variation in the CTLA4/CD28 gene region confers an increased risk of coeliac disease. Ann Hum Genet 66:125–137

    Article  PubMed  CAS  Google Scholar 

  56. Mora B, Bonamico M, Indovina P et al (2003) CTLA-4 +49 A/G dimorphism in Italian patients with celiac disease. Hum Immunol 64:297–301

    Article  PubMed  CAS  Google Scholar 

  57. Gudjonsdottir AH, Nilsson S, Naluai AT et al (2009) Association between genotypes and phenotypes in coeliac disease. J Pediatr Gastroenterol Nutr 49:165–169

    Article  PubMed  CAS  Google Scholar 

  58. Suppiah V, Alloza I, Heggarty S et al (2005) The CTLA4 +49 A/G*G-CT60*G haplotype is associated with susceptibility to multiple sclerosis in Flanders. J Neuroimmunol 164:148–153

    Article  PubMed  CAS  Google Scholar 

  59. Suppiah V, O'Doherty C, Heggarty S, Patterson CC, Rooney M, Vandenbroeck K (2006) The CTLA4+49A/G and CT60 polymorphisms and chronic inflammatory arthropathies in Northern Ireland. Exp Mol Pathol 80:141–146

    Article  PubMed  CAS  Google Scholar 

  60. Downie-Doyle S, Bayat N, Rischmueller M, Lester S (2006) Influence of CTLA4 haplotypes on susceptibility and some extraglandular manifestations in primary Sjogren’s syndrome. Arthritis Rheum 54:2434–2440

    Article  PubMed  CAS  Google Scholar 

  61. Hunt KA, McGovern DP, Kumar PJ et al (2005) A common CTLA4 haplotype associated with coeliac disease. Eur J Hum Genet 13:440–444

    Article  PubMed  CAS  Google Scholar 

  62. Amundsen SS, Naluai AT, Ascher H et al (2004) Genetic analysis of the CD28/CTLA4/ICOS (CELIAC3) region in coeliac disease. Tissue Antigens 64:593–599

    Article  PubMed  CAS  Google Scholar 

  63. Seidl C, Donner H, Fischer B et al (1998) CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens 51:62–66

    Article  PubMed  CAS  Google Scholar 

  64. Jung MH, Yu J, Shin CH, Suh BK, Yang SW, Lee BC (2009) Association of cytotoxic T lymphocyte antigen-4 gene polymorphisms and HLA class II alleles with the development of type 1 diabetes in Korean children and adolescents. J Korean Med Sci 24:1004–1009

    Article  PubMed  CAS  Google Scholar 

  65. Harper K, Balzano C, Rouvier E, Mattei MG, Luciani MF, Golstein P (1991) CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol 147:1037–1044

    PubMed  CAS  Google Scholar 

  66. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788

    Article  PubMed  CAS  Google Scholar 

  67. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  PubMed  CAS  Google Scholar 

  68. Alegre ML, Shiels H, Thompson CB, Gajewski TF (1998) Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161:3347–3356

    PubMed  CAS  Google Scholar 

  69. Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 165:6606–6611

    PubMed  CAS  Google Scholar 

  70. Maurer M, Loserth S, Kolb-Maurer A et al (2002) A polymorphism in the human cytotoxic T-lymphocyte antigen 4 ( CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant of Hungarian Scientific Research Foundation, No. OTKA T 73430. The authors wish to thank Judit Oksai and Edit Papp for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Melegh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csöngei, V., Járomi, L., Sáfrány, E. et al. Interaction between CTLA4 gene and IBD5 locus in Hungarian Crohn’s disease patients. Int J Colorectal Dis 26, 1119–1125 (2011). https://doi.org/10.1007/s00384-011-1202-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-011-1202-z

Keywords

Navigation