Skip to main content

Advertisement

Log in

Differential expression profiling of onco and tumor-suppressor genes from major-signaling pathways in Wilms’ tumor

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Wilms’ tumor is the most-frequent malignant-kidney tumor in children under 3–4 years of age and is caused by genetic alterations of oncogenes (OG) and tumor-suppressor genes (TG). Wilms’ tumor has been linked to many OG-&-TG. However, only WT1 has a proven role in the development of this embryonic-tumor.

Methods

The study investigates the level of mRNA expression of 16 OGs and 20 TGs involved in key-signaling pathways, including chromatin modification; RAS; APC; Cell Cycle/Apoptosis; Transcriptional Regulation; PI3K; NOTCH-&-HH; PI3K & RAS of 24-fresh Wilms’-tumor cases by capture-and-reporter probe Code-Sets chemistry, as CNVs in these pathway genes have been reported.

Results

Upon extensively investigating, MEN1, MLL2, MLL3, PBRM1, PRDM1, SMARCB1, SETD2, WT1, PTPN11, KRAS, HRAS, NF1, APC, RB1, FUBP1, BCOR, U2AF1, PIK3CA, PTEN, EBXW7, SMO, ALK, CBL, EP300-and-GATA1 were found to be significantly up-regulated in 58.34, 62.5, 79.17, 91.67, 58, 66.66,54, 58.34, 66.67, 75, 62.5, 62.5, 58, 79.17, 79.17, 75, 70.84, 50, 50, 75, 66.66, 62.50, 61.66, 58.34-and-62.50% of cases respectively, whereas BRAF, NF2, CDH1, BCL2, FGFR3, ERBB2, MET, RET, EGFR-and-GATA2 were significantly down regulated in 58, 87.50, 79.16, 54.16, 79.17, 91.66, 66.66, 58.33, 91.66-and-62.50% of cases, respectively. Interestingly, the WT1 gene was five-fold down regulated in 41.66% of cases only.

Conclusion

Hence, extensive profiling of OGs and TGs association of major-signaling pathways in Wilms’ tumor cases may aid in disease diagnosis. PBRM1 (up-regulated in 91.67% of cases), ERBB2 and EGFR (down-regulated in 91.66 and 91.66% of cases, respectively) could be marker genes. However, validation of all relevant results in a larger number of samples is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this study as no datasets were generated or analyzed during the current study.

References

  1. (2002) Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ(R)): Health Professional Version. PDQ Cancer Information Summaries, Bethesda (MD)

  2. Breslow NE, Olson J, Moksness J, Beckwith JB, Grundy P (1996) Familial Wilms’ tumor: a descriptive study. Med Pediatr Oncol 27:398–403. https://doi.org/10.1002/(SICI)1096-911X(199611)27:5%3c398::AID-MPO2%3e3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  3. McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, Virshup D, Huff V (1998) Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 58:1387–1390

    CAS  PubMed  Google Scholar 

  4. Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones K, Stratton MR, Narod SA (1996) Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 13:461–463. https://doi.org/10.1038/ng0896-461

    Article  CAS  PubMed  Google Scholar 

  5. Popov SD, Sebire NJ, Vujanic GM. (2016) Wilms’ tumour—histology and differential diagnosis. In: van den Heuvel-Eibrink MM. (ed). Wilms Tumor, Brisbane (AU)

  6. Perotti D, Hohenstein P, Bongarzone I, Maschietto M, Weeks M, Radice P, Pritchard-Jones K (2013) Is Wilms tumor a candidate neoplasia for treatment with WNT/beta-catenin pathway modulators?–A report from the renal tumors biology-driven drug development workshop. Mol Cancer Ther 12:2619–2627. https://doi.org/10.1158/1535-7163.MCT-13-0335

    Article  CAS  PubMed  Google Scholar 

  7. Coppes MJ, de Kraker J, van Dijken PJ, Perry HJ, Delemarre JF, Tournade MF, Lemerle J, Voute PA (1989) Bilateral Wilms’ tumor: long-term survival and some epidemiological features. J Clin Oncol 7:310–315. https://doi.org/10.1200/JCO.1989.7.3.310

    Article  CAS  PubMed  Google Scholar 

  8. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823. https://doi.org/10.1073/pnas.68.4.820

    Article  PubMed  PubMed Central  Google Scholar 

  9. Knudson AG Jr, Strong LC (1972) Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst 48:313–324

    PubMed  Google Scholar 

  10. Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE (1991) WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353:431–434. https://doi.org/10.1038/353431a0

    Article  CAS  PubMed  Google Scholar 

  11. Segers H, Kersseboom R, Alders M, Pieters R, Wagner A, van den Heuvel-Eibrink MM (2012) Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients. Eur J Cancer 48:3249–3256. https://doi.org/10.1016/j.ejca.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  12. Berger AH, Knudson AG, Pandolfi PP (2011) A continuum model for tumour suppression. Nature 476:163–169. https://doi.org/10.1038/nature10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799. https://doi.org/10.1038/nm1087

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501. https://doi.org/10.1038/nature12912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao J, Ciriello G, Sander C, Schultz N (2014) Collection, integration and analysis of cancer genomic profiles: from data to insight. Curr Opin Genet Dev 24:92–98. https://doi.org/10.1016/j.gde.2013.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR, Australian Pancreatic Cancer Genome I, Consortium IBC, Consortium IM-S (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gadd S, Huff V, Walz AL, Ooms A, Armstrong AE, Gerhard DS, Smith MA, Auvil JMG, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Hermida LC, Davidsen T, Gesuwan P, Ma Y, Zong Z, Mungall AJ, Moore RA, Marra MA, Dome JS, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Ross N, Gastier-Foster JM, Arold ST, Perlman EJ (2017) A children’s oncology group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 49:1487–1494. https://doi.org/10.1038/ng.3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M (2009) WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 48:1102–1111. https://doi.org/10.1002/gcc.20712

    Article  CAS  PubMed  Google Scholar 

  20. Ruteshouser EC, Robinson SM, Huff V (2008) Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47:461–470. https://doi.org/10.1002/gcc.20553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Bowlby R, Brooks D, Ma Y, Mungall AJ, Moore RA, Schein J, Marra MA, Huff V, Dome JS, Chi YY, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Jafari N, Ross N, Gastier-Foster JM, Perlman EJ (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27:286–297. https://doi.org/10.1016/j.ccell.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wegert J, Ishaque N, Vardapour R, Georg C, Gu Z, Bieg M, Ziegler B, Bausenwein S, Nourkami N, Ludwig N, Keller A, Grimm C, Kneitz S, Williams RD, Chagtai T, Pritchard-Jones K, van Sluis P, Volckmann R, Koster J, Versteeg R, Acha T, O’Sullivan MJ, Bode PK, Niggli F, Tytgat GA, van Tinteren H, van den Heuvel-Eibrink MM, Meese E, Vokuhl C, Leuschner I, Graf N, Eils R, Pfister SM, Kool M, Gessler M (2015) Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27:298–311. https://doi.org/10.1016/j.ccell.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter JS, Mendell JT, Amatruda JF (2014) Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2:4802. https://doi.org/10.1038/ncomms5802

    Article  CAS  PubMed  Google Scholar 

  24. Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, Krepischi AC, Olivieri EH, Cunha IW, Tabori U, Grundy PE, Costa CM, de Camargo B, Galante PA, Carraro DM (2014) Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5:4039. https://doi.org/10.1038/ncomms5039

    Article  CAS  PubMed  Google Scholar 

  25. Hanks S, Perdeaux ER, Seal S, Ruark E, Mahamdallie SS, Murray A, Ramsay E, Del Vecchio DS, Zachariou A, de Souza B, Warren-Perry M, Elliott A, Davidson A, Price H, Stiller C, Pritchard-Jones K, Rahman N (2014) Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun 5:4398. https://doi.org/10.1038/ncomms5398

    Article  CAS  PubMed  Google Scholar 

  26. Mahamdallie SS, Hanks S, Karlin KL, Zachariou A, Perdeaux ER, Ruark E, Shaw CA, Renwick A, Ramsay E, Yost S, Elliott A, Birch J, Capra M, Gray J, Hale J, Kingston J, Levitt G, McLean T, Sheridan E, Renwick A, Seal S, Stiller C, Sebire N, Westbrook TF, Rahman N (2015) Mutations in the transcriptional repressor REST predispose to Wilms tumor. Nat Genet 47:1471–1474. https://doi.org/10.1038/ng.3440

    Article  CAS  PubMed  Google Scholar 

  27. Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J (1994) Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet 7:91–97. https://doi.org/10.1038/ng0594-91

    Article  CAS  PubMed  Google Scholar 

  28. el Bahtimi R, Hazen-Martin DJ, Re GG, Willingham MC, Garvin AJ (1996) Immunophenotype, mRNA expression, and gene structure of p53 in Wilms’ tumors. Mod Pathol 9:238–244

    PubMed  Google Scholar 

  29. Wallkamm V, Dorlich R, Rahm K, Klessing T, Nienhaus GU, Wedlich D, Gradl D (2014) Live imaging of Xwnt5A-ROR2 complexes. PLoS ONE 9:e109428. https://doi.org/10.1371/journal.pone.0109428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams RD, Al-Saadi R, Chagtai T, Popov S, Messahel B, Sebire N, Gessler M, Wegert J, Graf N, Leuschner I, Hubank M, Jones C, Vujanic G, Pritchard-Jones K, Children’s C, Leukaemia G and Group SWTB (2010) Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms’ tumor. Clin Cancer Res 16:2036–2045. https://doi.org/10.1158/1078-0432.CCR-09-2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahamdallie S, Yost S, Poyastro-Pearson E, Holt E, Zachariou A, Seal S, Elliott A, Clarke M, Warren-Perry M, Hanks S, Anderson J, Bomken S, Cole T, Farah R, Furtwaengler R, Glaser A, Grundy R, Hayden J, Lowis S, Millot F, Nicholson J, Ronghe M, Skeen J, Williams D, Yeomanson D, Ruark E, Rahman N (2019) Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc Health 3:322–331. https://doi.org/10.1016/S2352-4642(19)30018-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, Anderson J, Grundy P, Mullen EA, Geller JI, Fernandez CV, Perlman EJ (2016) Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the children’s oncology group. J Clin Oncol 34:3189–3194. https://doi.org/10.1200/JCO.2015.66.1140

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chagtai T, Zill C, Dainese L, Wegert J, Savola S, Popov S, Mifsud W, Vujanic G, Sebire N, Le Bouc Y, Ambros PF, Kager L, O’Sullivan MJ, Blaise A, Bergeron C, Mengelbier LH, Gisselsson D, Kool M, Tytgat GA, van den Heuvel-Eibrink MM, Graf N, van Tinteren H, Coulomb A, Gessler M, Williams RD, Pritchard-Jones K (2016) Gain of 1q as a prognostic biomarker in wilms tumors (WTs) treated with preoperative chemotherapy in the international society of paediatric oncology (SIOP) WT 2001 trial: a SIOP renal tumours biology consortium study. J Clin Oncol 34:3195–3203. https://doi.org/10.1200/JCO.2015.66.0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, Shamberger RC, Haase GM, D’Angio GJ, Donaldson M, Coppes MJ, Malogolowkin M, Shearer P, Thomas PR, Macklis R, Tomlinson G, Huff V, Green DM, National Wilms Tumor Study G (2005) Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23:7312–7321. https://doi.org/10.1200/JCO.2005.01.2799

    Article  CAS  PubMed  Google Scholar 

  35. Muller EA, Aradhya S, Atkin JF, Carmany EP, Elliott AM, Chudley AE, Clark RD, Everman DB, Garner S, Hall BD, Herman GE, Kivuva E, Ramanathan S, Stevenson DA, Stockton DW, Hudgins L (2012) Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia, and developmental delay. Am J Med Genet A 158A:391–399. https://doi.org/10.1002/ajmg.a.34216

    Article  CAS  PubMed  Google Scholar 

  36. Isidor B, Bourdeaut F, Lafon D, Plessis G, Lacaze E, Kannengiesser C, Rossignol S, Pichon O, Briand A, Martin-Coignard D, Piccione M, David A, Delattre O, Jeanpierre C, Sevenet N, Le Caignec C (2013) Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. Eur J Hum Genet 21:784–787. https://doi.org/10.1038/ejhg.2012.252

    Article  CAS  PubMed  Google Scholar 

  37. Martins AG, Pinto AT, Domingues R, Cavaco BM (2018) Identification of a novel CTR9 germline mutation in a family with Wilms tumor. Eur J Med Genet 61:294–299. https://doi.org/10.1016/j.ejmg.2017.12.010

    Article  PubMed  Google Scholar 

  38. Singh N, Sahu DK, Goel M, Kant R, Gupta DK (2015) Retrospective analysis of FFPE based Wilms’ tumor samples through copy number and somatic mutation related molecular inversion probe based array. Gene 565:295–308. https://doi.org/10.1016/j.gene.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  39. Naing L, Winn T, Rusli BN (2006) Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci 1:9–14

    Google Scholar 

  40. Kumar NA, Bezawada S, Chaitanya SV, Gouri SRS, Pulla P (2016) A retrospective study of Wilms tumour in our institute. Int J Contemp Med Res 3(8):2223–2225

    Google Scholar 

  41. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  42. Malkov VA, Serikawa KA, Balantac N, Watters J, Geiss G, Mashadi-Hossein A, Fare T (2009) Multiplexed measurements of gene signatures in different analytes using the nanostring nCounter assay system. BMC Res Notes 2:80. https://doi.org/10.1186/1756-0500-2-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bentley-Hewitt KL, Hedderley DI, Monro J, Martell S, Smith H, Mishra S (2016) Comparison of quantitative real-time polymerase chain reaction with NanoString(R) methodology using adipose and liver tissues from rats fed seaweed. N Biotechnol 33:380–386. https://doi.org/10.1016/j.nbt.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  44. Carraro DM, Ramalho RF, Maschietto M. (2016) Gene Expression in Wilms tumor: disturbance of the Wnt signaling pathway and MicroRNA biogenesis. In: van den Heuvel-Eibrink MM (ed). Wilms Tumor, Brisbane (AU)

  45. Xu B, Zeng DQ, Wu Y, Zheng R, Gu L, Lin X, Hua X, Jin GH (2011) Tumor suppressor menin represses paired box gene 2 expression via Wilms tumor suppressor protein-polycomb group complex. J Biol Chem 286:13937–13944. https://doi.org/10.1074/jbc.M110.197830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagner KD, Wagner N, Schedl A (2003) The complex life of WT1. J Cell Sci 116:1653–1658. https://doi.org/10.1242/jcs.00405

    Article  CAS  PubMed  Google Scholar 

  47. Sigauke E, Rakheja D, Maddox DL, Hladik CL, White CL, Timmons CF, Raisanen J (2006) Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 19:717–725. https://doi.org/10.1038/modpathol.3800581

    Article  CAS  PubMed  Google Scholar 

  48. Zlobin A, Wyatt D, Varsanik M, Dingwall A, Osipo C (2018) Roles for MLL2/KMT2D or MLL3/KMT2C in HER+ breast cancer stem cells. Cancer Res 78(13_Supplement):5845. https://doi.org/10.1158/1538-7445.AM2018-5845

    Article  Google Scholar 

  49. Khailany RA, Igci M, Bayraktar E, Erturhan S, Karakok M, Arslan A (2015) VHL, PBRM1 and SETD2 genes in kidney cancer: a molecular investigation. Int J Med Health Sci. https://doi.org/10.5281/zenodo.1106329

    Article  Google Scholar 

  50. Dalpa E, Gourvas V, Soulitzis N, Spandidos DA (2017) K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med Oncol 34:6. https://doi.org/10.1007/s12032-016-0862-5

    Article  CAS  PubMed  Google Scholar 

  51. Stay EJ, Vawter G (1977) The relationship between nephroblastoma and neurofibromatosis (Von Recklinghausen’s disease). Cancer 39:2550–2555. https://doi.org/10.1002/1097-0142(197706)39:6%3c2550::aid-cncr2820390636%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  52. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL (2009) Neurofibromatosis type 1 revisited. Pediatrics 123:124–133. https://doi.org/10.1542/peds.2007-3204

    Article  PubMed  Google Scholar 

  53. Maschietto M, de Camargo B, Brentani H, Grundy P, Sredni ST, Torres C, Mota LD, Cunha IW, Patrao DF, Costa CM, Soares FA, Brentani RR, Carraro DM (2008) Molecular profiling of isolated histological components of wilms tumor implicates a common role for the Wnt signaling pathway in kidney and tumor development. Oncology 75:81–91. https://doi.org/10.1159/000155210

    Article  CAS  PubMed  Google Scholar 

  54. Henderson BR, Fagotto F (2002) The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 3:834–839. https://doi.org/10.1093/embo-reports/kvf181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu C, Zhu W, Qian J, He S, Wu C, Chen Y, Shu Y (2013) WT1 promotes invasion of NSCLC via suppression of CDH1. J Thorac Oncol 8:1163–1169. https://doi.org/10.1097/JTO.0b013e31829f6a5f

    Article  CAS  PubMed  Google Scholar 

  56. Re GG, Hazen-Martin DJ, El Bahtimi R, Brownlee NA, Willingham MC, Garvin AJ (1999) Prognostic significance of Bcl-2 in Wilms’ tumor and oncogenic potential of Bcl-X(L) in rare tumor cases. Int J Cancer 84:192–200. https://doi.org/10.1002/(sici)1097-0215(19990420)84:2%3c192::aid-ijc17%3e3.0.co;2-1

    Article  CAS  PubMed  Google Scholar 

  57. Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S (2019) The genetic changes of Wilms tumour. Nat Rev Nephrol 15:240–251. https://doi.org/10.1038/s41581-019-0112-0

    Article  PubMed  Google Scholar 

  58. Madsen RR, Vanhaesebroeck B, Semple RK (2018) Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol Med 24:856–870. https://doi.org/10.1016/j.molmed.2018.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Griff JR, Duffy KA, Kalish JM (2020) Characterization and childhood tumor risk assessment of genetic and epigenetic syndromes associated with lateralized overgrowth. Front Pediatr 8:613260. https://doi.org/10.3389/fped.2020.613260

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lu H, Tan Y, Chen L (2019) A clinical study on the expression of PTEN in renal cell carcinoma in children. Oncol Lett 17:69–72. https://doi.org/10.3892/ol.2018.9571

    Article  CAS  PubMed  Google Scholar 

  61. Cui M, Liu W, Zhang L, Guo F, Liu Y, Chen F, Liu T, Ma R, Wu R (2017) Over-EXPRESSION of miR-21 and lower PTEN Levels in Wilms’ tumor with aggressive behavior. Tohoku J Exp Med 242:43–52. https://doi.org/10.1620/tjem.242.43

    Article  CAS  PubMed  Google Scholar 

  62. Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, Alterovitz G, Ramoni M, Fraenkel E, Kreidberg JA (2010) Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 137:1189–1203. https://doi.org/10.1242/dev.045732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasei M, Modjtahedi H, Ale-Booyeh O, Mosallaei A, Kajbafzadeh AM, Shahriari M, Ghaderi AA, Soleymanpour H, Kosari F, Moch H, Sauter G (2009) Amplification and expression of EGFR and ERBB2 in Wilms tumor. Cancer Genet Cytogenet 194:88–95. https://doi.org/10.1016/j.cancergencyto.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  64. Takita J (2017) The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci 108:1913–1920. https://doi.org/10.1111/cas.13333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cancilla B, Ford-Perriss MD, Bertram JF (1999) Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. Kidney Int 56:2025–2039. https://doi.org/10.1046/j.1523-1755.1999.00781.x

    Article  CAS  PubMed  Google Scholar 

  66. Plowright EE, Li Z, Bergsagel PL, Chesi M, Barber DL, Branch DR, Hawley RG, Stewart AK (2000) Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood 95:992–998

    Article  CAS  Google Scholar 

  67. Sturla LM, Merrick AE, Burchill SA (2003) FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells. Br J Cancer 89:1276–1284. https://doi.org/10.1038/sj.bjc.6601249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Furuhata A, Murakami M, Ito H, Gao S, Yoshida K, Sobue S, Kikuchi R, Iwasaki T, Takagi A, Kojima T, Suzuki M, Abe A, Naoe T, Murate T (2009) GATA-1 and GATA-2 binding to 3’ enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 23:1270–1277. https://doi.org/10.1038/leu.2009.13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by SCIENCE AND ENGINEERING RESEARCH BOARD (SERB), National Post-Doctoral Fellowship award, file no. PDF/2016/001782, Government of India. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. We are very grateful to King George’s Medical University to facilitating the work. We are grateful to Miss. Archana Mishra, Dr. Pratap Pathak and Mr. NAwazish Alam for his technical assistance.

Funding

This work was supported by SCIENCE AND ENGINEERING RESEARCH BOARD (SERB), National Post-Doctoral Fellowship award, file no. PDF/2016/001782, Government of India. Dr Dinesh Kumar Sahu has received research grants from SERB, National Post-Doctoral Fellowship award, file no. PDF/2016/001782, Government of India. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Financial interests

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DKS; NS; Methodology: DKS; Formal analysis and investigation: DKS; Writing—original draft preparation: DKS; MD; Writing—review and editing: MD; DKG; Funding acquisition: DKS; Resources: NS; JR; Supervision: NS; DKG; JR.

Corresponding authors

Correspondence to Dinesh Kumar Sahu or Neetu Singh.

Ethics declarations

Conflict of interest

Dr Dinesh Kumar Sahu has received research grants from SERB, National Post-Doctoral Fellowship award, file no. PDF/2016/001782, Government of India. All co-authors, who have contributed to the work and agreed to submit the manuscripts to this journal. This manuscript has not been previously published in any language anywhere and is not currently under consideration of publication by another journal. The authors also declare no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Central Drugs Standard Control Organization (CDSCO), Government of India approved (Registration No; ECR/2621/Ins/UP/2013/RR/19) Institutional Ethics Committee of King George’s Medical University, Lucknow, India File no 1899/Ethics/2021 (Ref. Code: 85th ECM II A/P6). Written informed consent was obtained from the parents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 161 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D.K., Singh, N., Das, M. et al. Differential expression profiling of onco and tumor-suppressor genes from major-signaling pathways in Wilms’ tumor. Pediatr Surg Int 38, 1601–1617 (2022). https://doi.org/10.1007/s00383-022-05202-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-022-05202-2

Keywords

Navigation