Skip to main content

Advertisement

Log in

An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

We aimed to evaluate the effect of human mesenchymal stem cells (hMSCs) on congenital diaphragmatic hernia (CDH) by intra-amniotic injection in a rat CDH model.

Methods

Nitrofen (100 mg) was administered to pregnant rats at E9.5. hMSCs (1.0 × 106) or PBS was injected into each amniotic cavity at E18, and fetuses were harvested at E21. The fetal lungs were classified into normal, CDH, and CDH-hMSCs groups. To determine the lung maturity, we assessed the alveolar histological structure by H&E and Weigert staining and the alveolar arteries by Elastica Van Gieson (EVG) staining. TTF-1, a marker of type II alveolar epithelial cells, was also evaluated by immunohistochemical staining and real-time reverse transcription polymerase chain reaction.

Results

The survival rate after intra-amniotic injection was 72.1%. The CDH-hMSCs group had significantly more alveoli and secondary septa than the CDH group (p < 0.05). The CDH-hMSCs group had larger air spaces and thinner alveolar walls than the CDH group (p < 0.05). The medial and adventitial thickness of the pulmonary artery in the CDH-hMSCs group were significantly better (p < 0.001), and there were significantly fewer TTF-1-positive cells than in the CDH group (p < 0.001).

Conclusion

These results suggest that intra-amniotic injection of hMSCs has therapeutic potential for CDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandrasekharan PK, Rawat M, Madappa R, Rothstein DH, Lakshminrusimha S (2017) Congenital diaphragmatic hernia—a review. Matern Health Neonatol Perinatol 3:6. https://doi.org/10.1186/s40748-017-0045-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kimura O, Furukawa T, Higuchi K, Takeuchi Y, Fumino S, Aoi S et al (2013) Impact of our new protocol on the outcome of the neonates with congenital diaphragmatic hernia. Pediatr Surg Int 29(4):335–339. https://doi.org/10.1007/s00383-012-3242-z

    Article  PubMed  Google Scholar 

  3. Ruano R, Yoshisaki CT, da Silva MM, Ceccon ME, Grasi MS, Tannuri U et al (2012) A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 39(1):20–27. https://doi.org/10.1002/uog.10142

    Article  CAS  PubMed  Google Scholar 

  4. Delens L, Jouret F, Detry O, Beguin Y, Krzesinski JM (2014) The role of mesenchymal stromal cells in solid organ transplantation. Rev Med Suisse 10(439):1540–1543 (1538)

    Google Scholar 

  5. Vanover M, Wang A, Farmer D (2017) Potential clinical applications of placental stem cells for use in fetal therapy of birth defects. Placenta 59:107–112. https://doi.org/10.1016/j.placenta.2017.05.010

    Article  PubMed  Google Scholar 

  6. Moroncini G, Paolini C, Orlando F, Capelli C, Grieco A, Tonnini C et al (2018) Mesenchymal stromal cells from human umbilical cord prevent the development of lung fibrosis in immunocompetent mice. PLoS One 13(6):e0196048. https://doi.org/10.1371/journal.pone.0196048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Gu C, Xu W, Yan J, Xia Y, Ma Y et al (2014) Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res 15:120. https://doi.org/10.1186/s12931-014-0120-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahn SY, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY et al (2018) Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med 50(4):26. https://doi.org/10.1038/s12276-018-0055-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I et al (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 77(3):370–376. https://doi.org/10.1016/j.mvr.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi K, Lemke RP, Greer JJ (2001) Ultrasound measurements of fetal breathing movements in the rat. J Appl Physiol 91(1):316–320. https://doi.org/10.1152/jappl.2001.91.1.316

    Article  PubMed  Google Scholar 

  11. Cooney TP, Thurlbeck WM (1982) The radial alveolar count method of Emery and Mithal a reappraisal 2–intrauterine and early postnatal lung growth. Thorax 37(8):580–583. https://doi.org/10.1136/thx.37.8.580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pua ZJ, Stonestreet BS, Cullen A, Shahsafaei A, Sadowska GB, Sunday ME (2005) Histochemical analyses of altered fetal lung development following single vs. multiple courses of antenatal steroids. J Histochem Cytochem 53(12):1469–1479. https://doi.org/10.1369/jhc.5A6721.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roubliova XI, Deprest JA, Biard JM, Ophalvens L, Gallot D, Jani JC et al (2010) Morphologic changes and methodological issues in the rabbit experimental model for diaphragmatic hernia. Histol Histopathol 25(9):1105–1116. https://doi.org/10.14670/HH-25.1105

    Article  PubMed  Google Scholar 

  14. Yuniartha R, Alatas FS, Nagata K, Kuda M, Yanagi Y, Esumi G et al (2014) Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 30(9):907–914. https://doi.org/10.1007/s00383-014-3576-9

    Article  PubMed  Google Scholar 

  15. Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar JA (2013) Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 22(9):1683–1694. https://doi.org/10.3727/096368912X657756

    Article  CAS  PubMed  Google Scholar 

  16. Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM (2014) Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 49(6):859–865. https://doi.org/10.1016/j.jpedsurg.2014.01.013

    Article  PubMed  Google Scholar 

  17. Sakai K, Kimura O, Furukawa T, Fumino S, Higuchi K, Wakao J et al (2014) Prenatal administration of neuropeptide bombesin promotes lung development in a rat model of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 49(12):1749–1752. https://doi.org/10.1016/j.jpedsurg.2014.09.015

    Article  PubMed  Google Scholar 

  18. Montalva L, Zani A (2019) Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 35(1):41–61. https://doi.org/10.1007/s00383-018-4375-5

    Article  PubMed  Google Scholar 

  19. Kugler MC, Joyner AL, Loomis CA, Munger JS (2015) Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 52(1):1–13. https://doi.org/10.1165/rcmb.2014-0132TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Umeda S, Miyagawa S, Fukushima S, Oda N, Saito A, Sakai Y et al (2016) Enhanced pulmonary vascular and alveolar development via prenatal administration of a slow-release synthetic prostacyclin agonist in rat fetal lung hypoplasia. PLoS One 11(8):e0161334. https://doi.org/10.1371/journal.pone.0161334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boucherat O, Benachi A, Barlier-Mur AM, Franco-Montoya ML, Martinovic J, Thebaud B et al (2007) Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models. Am J Respir Crit Care Med 175(10):1066–1077. https://doi.org/10.1164/rccm.200601-050OC

    Article  CAS  PubMed  Google Scholar 

  22. Shehata SMK, Sharma HS, van der Staak FH, van de Kaa-Hulsbergen C, Mooi WJ, Tibboel D (2000) Remodeling of pulmonary arteries in human congenital diaphragmatic hernia with or without extracorporeal membrane oxygenation. J Pediatr Surg 35(2):208–215. https://doi.org/10.1016/s0022-3468(00)90011-3

    Article  CAS  PubMed  Google Scholar 

  23. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141(3):502–513. https://doi.org/10.1242/dev.098186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takayasu H, Nakazawa N, Montedonico S, Sugimoto K, Sato H, Puri P (2007) Impaired alveolar epithelial cell differentiation in the hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 23(5):405–410. https://doi.org/10.1007/s00383-006-1853-y

    Article  PubMed  Google Scholar 

  25. Di Bernardo J, Maiden MM, Jiang G, Hershenson MB, Kunisaki SM (2014) Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells. J Surg Res 190(1):255–263. https://doi.org/10.1016/j.jss.2014.04.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT KAKENHI grant number 15K10926 [TF]). The English used in this manuscript was reviewed by Brian Quinn (Editor-in-Chief, Japan Medical Communication).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Takayama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayama, S., Sakai, K., Fumino, S. et al. An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model. Pediatr Surg Int 35, 1353–1361 (2019). https://doi.org/10.1007/s00383-019-04561-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-019-04561-7

Keywords

Navigation