Skip to main content

Advertisement

Log in

Plasma citrulline is not a biomarker for intestinal adaptation in short bowel syndrome, studied in piglets: a model for human neonates

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

There are no in vivo methods to measure adaptation in neonatal short bowel syndrome (SBS). We evaluated citrulline (Cit) levels in neonatal piglet surgical models of SBS.

Methods

Piglets underwent 75% mid-intestinal resection with jejunoileal anastomosis (JI), 75% distal resection of ileum with jejunocolic anastomosis (JC) or sham surgery. Jugular and gastric catheters were inserted for parenteral and enteral nutrition. On D7, small intestine length and weight were measured, jejunum collected for histopathology and Cit level determined.

Results

JI (n = 5) compared to JC (n = 5) had increased small intestinal length (JC − 17.5 cm; JI +22.0 cm; p = 0.02) and mass (JC 43.1 mg/cm/kg; JI 51.3 mg/cm/kg; p = 0.02), while Cit did not differ (JI 801.0 µM; JC 677.7 µM; p = 0.90). Including non-resected shams (n = 4), Cit correlated with length (R2 = 0.48; p = 0.006), but not for SBS alone (R2 = 0.11; p = 0.4), mass (R2 = 0.05; p = 0.5). A second experiment compared change in Cit levels from baseline to D7. Levels declined in sham (n = 8) and JC (n = 10) (sham − 110.1 µM; JC − 56.6 µM; p = 0.17), regardless of intestinal lengthening (sham 29.9 cm; JC − 10.4 cm; p = 0.002).

Conclusion

Citrulline levels predict large differences in intestinal length and ‘identify’ SBS. However, citrulline cannot discriminate between adaptation in JI and JC, nor predict intestinal lengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SBS:

Short bowel syndrome

EN:

Enteral nutrition

PN:

Parenteral nutrition

JI:

Jejunoileal anastomosis anatomy

JC:

Jejunocolic anastomosis anatomy

References

  1. O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J (2006) Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol 4(1):6–10. https://doi.org/10.1016/j.cgh.2005.10.002

    Article  PubMed  Google Scholar 

  2. Sukhotnik I, Siplovich L, Shiloni E, Mor-Vaknin N, Harmon CM, Coran AG (2002) Intestinal adaptation in short-bowel syndrome in infants and children: a collective review. Pediatr Surg Int 18(4):258–263. https://doi.org/10.1007/s003830100695

    Article  CAS  PubMed  Google Scholar 

  3. Chandra R, Kesavan A (2018) Current treatment paradigms in pediatric short bowel syndrome. Clin J Gastroenterol 11(2):103–112. https://doi.org/10.1007/s12328-017-0811-7

    Article  PubMed  Google Scholar 

  4. Algin O, Evrimler S, Arslan H (2013) Advances in radiologic evaluation of small bowel diseases. J Comput Assist Tomogr 37(6):862–871. https://doi.org/10.1097/RCT.0b013e318299658c

    Article  PubMed  Google Scholar 

  5. Raman M, Fenton T, Crotty P, Ghosh S, Rioux K, Hundal R (2015) A novel method to identify fat malabsorption: the Serum retinyl palmitate test. Clin Chim Acta 438:103–106. https://doi.org/10.1016/j.cca.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  6. Crenn P, Coudray-Lucas C, Cynober L, Messing B (1998) Post-absorptive plasma citrulline concentration: a marker of intestinal failure in humans. Transpl Proc 30(6):2528

    Article  CAS  Google Scholar 

  7. Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 27(3):328–339. https://doi.org/10.1016/j.clnu.2008.02.005

    Article  CAS  Google Scholar 

  8. Kohler ES, Sankaranarayanan S, van Ginneken CJ, van Dijk P, Vermeulen JL, Ruijter JM, Lamers WH, Bruder E (2008) The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and-catabolizing enzymes. BMC Dev Biol 8:107. https://doi.org/10.1186/1471-213x-8-107

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, Wizzard PR, Li J, Bigam DL, Brubaker PL, Turner JM, Wales PW (2017) Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 312(4):G390–G404. https://doi.org/10.1152/ajpgi.00281.2016

    Article  PubMed  Google Scholar 

  10. Josephson J, Turner JM, Field CJ, Wizzard PR, Nation PN, Sergi C, Ball RO, Pencharz PB, Wales PW (2015) Parenteral soy oil and fish oil emulsions: impact of dose restriction on Bile flow and brain size of parenteral nutrition-fed neonatal piglets. JPEN J Parenter Enteral Nutr 39(6):677–687. https://doi.org/10.1177/0148607114556494

    Article  CAS  PubMed  Google Scholar 

  11. Cisler JJ, Buchman AL (2005) Intestinal adaptation in short bowel syndrome. J Investig Med 53(8):402–413

    Article  CAS  PubMed  Google Scholar 

  12. Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124(5):1210–1219

    Article  CAS  Google Scholar 

  13. Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B (2000) Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 119(6):1496–1505. https://doi.org/10.1053/gast.2000.20227

    Article  CAS  Google Scholar 

  14. Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10(5):620–626. https://doi.org/10.1097/MCO.0b013e32829fb38d

    Article  CAS  PubMed  Google Scholar 

  15. Fragkos KC, Forbes A (2018) Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. United Eur Gastroenterol J 6(2):181–191. https://doi.org/10.1177/2050640617737632

    Article  CAS  Google Scholar 

  16. Belza C, Fitzgerald K, de Silva N, Avitzur Y, Steinberg K, Courtney-Martin G, Wales PW (2017) Predicting intestinal adaptation in pediatric intestinal failure: a retrospective cohort study. Ann Surg. https://doi.org/10.1097/sla.0000000000002602

    Article  Google Scholar 

  17. Gutierrez IM, Fisher JG, Ben-Ishay O, Jones BA, Kang KH, Hull MA, Shillingford N, Zurakowski D, Modi BP, Jaksic T (2014) Citrulline levels following proximal versus distal small bowel resection. J Pediatr Surg 49(5):741–744. https://doi.org/10.1016/j.jpedsurg.2014.02.056

    Article  PubMed  Google Scholar 

  18. Stultz JS, Tillman EM, Helms RA (2011) Plasma citrulline concentration as a biomarker for bowel loss and adaptation in hospitalized pediatric patients requiring parenteral nutrition. Nutr Clin Pract 26(6):681–687. https://doi.org/10.1177/0884533611425682

    Article  PubMed  Google Scholar 

  19. Diamanti A, Panetta F, Gandullia P, Morini F, Noto C, Torre G, Lezo A, Goffredo B, Daniele A, Gambarara M (2011) Plasma citrulline as marker of bowel adaptation in children with short bowel syndrome. Langenbeck’s Arch Surg 7:1041

    Article  Google Scholar 

  20. Bailly-Botuha C, Colomb V, Thioulouse E, Berthe MC, Garcette K, Dubern B, Goulet O, Couderc R, Girardet JP (2009) Plasma citrulline concentration reflects enterocyte mass in children with short bowel syndrome. Pediatr Res 65(5):559–563. https://doi.org/10.1203/PDR.0b013e31819986da

    Article  PubMed  Google Scholar 

  21. Fitzgibbons S, Ching YA, Valim C, Zhou J, Iglesias J, Duggan C, Jaksic T (2009) Relationship between serum citrulline levels and progression to parenteral nutrition independence in children with short bowel syndrome. J Pediatr Surg 44(5):928–932. https://doi.org/10.1016/j.jpedsurg.2009.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bourdon A, Rougé C, Legrand A, Robert CD, Piloquet H, Vodovar M, Voyer M, Rozé J-C, Darmaun D (2012) Urinary citrulline in very low birth weight preterm infants receiving intravenous nutrition. Br J Nutr 108(7):1150–1154. https://doi.org/10.1017/s0007114511006660

    Article  CAS  PubMed  Google Scholar 

  23. Rabier D, Kamoun P (1995) Metabolism of citrulline in man. Amino Acids 9(4):299–316. https://doi.org/10.1007/bf00807268

    Article  CAS  PubMed  Google Scholar 

  24. Luo M, Fernández-Estívariz C, Manatunga AK, Bazargan N, Gu LH, Jones DP, Klapproth JM, Sitaraman SV, Leader LM, Galloway JR, Ziegler TR (2007) Are plasma citrulline and glutamine biomarkers of intestinal absorptive function in patients with short bowel syndrome? JPEN J Parenter Enteral Nutr 31(1):1–7

    Article  PubMed  Google Scholar 

  25. Fjermestad H, Hvistendahl M, Jeppesen PB (2017) Fasting and postprandial plasma citrulline and the correlation to intestinal function evaluated by 72-hour metabolic balance studies in short bowel jejunostomy patients with intestinal failure. JPEN J Parenter Enteral Nutr. https://doi.org/10.1177/0148607116687497

    Article  PubMed  Google Scholar 

  26. Melis GC, Boelens PG, van der Sijp JRM, Popovici T, De Bandt J-P, Cynober L, van Leeuwen PAM (2007) The feeding route (enteral or parenteral) affects the plasma response of the dipetide Ala-Gln and the amino acids glutamine, citrulline and arginine, with the administration of Ala-Gln in preoperative patients. Br J Nutr 94(1):19–26. https://doi.org/10.1079/BJN20051463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the important contribution of Charlane Gorsak for technical assistance with the study and all the staff of the Swine Research and Technology Centre, University of Alberta.

Funding

This work was Funded by the Canadian Institutes of Health Research (Grant Number: MOP-126179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine M. Turner.

Ethics declarations

Conflict of interest

Author Marihan Lansing declares that she has no conflict of interest. JM Turner has research grant funding from GLyPharma Therapeutic, Inc., and from Empire Biotechnologies Inc. Author Pamela Wizzard declares that she has no conflict of interest. Author Celeste M. Lavallee declares that she has no conflict of interest. Author David W. Lim declares that he has no conflict of interest. Author Mitsuru Muto declares that he has no conflict of interest. Author Patrick N. Nation declares that he has no conflict of interest. Author Paul B. Pencharz declares that he has no conflict of interest. Author Ron O. Ball declares that he has no conflict of interest. Author Paul W. Wales has research grant funding from GLyPharma Therapeutic, Inc., and from Empire Biotechnologies Inc.

Human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lansing, M., Turner, J.M., Wizzard, P. et al. Plasma citrulline is not a biomarker for intestinal adaptation in short bowel syndrome, studied in piglets: a model for human neonates. Pediatr Surg Int 35, 657–663 (2019). https://doi.org/10.1007/s00383-019-04475-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-019-04475-4

Keywords

Navigation