Skip to main content

Advertisement

Log in

Microscopic magnetic resonance in congenital diaphragmatic hernia and associated malformations in rats

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background/aim

The research on congenital diaphragmatic hernia (CDH) is often carried out on the nitrofen fetal rat model in which most investigations involve microdissections and fastidious assessment of serial sections of different anatomic areas. Current microscopic magnetic resonance (MMR) equipment allows detailed anatomic studies of alive, fresh or fixed fetuses. The purpose of the present study was to demonstrate that CDH itself and most of the associated malformations are adequately imaged and measured by MMR.

Materials and methods

Fetuses from pregnant rats treated with either i.g. vehicle (control, n = 10) or 100 mg nitrofen (only those with CDH, n = 18) on E9.5 were recovered on E21 (term = E22) and total body was scanned by MMR under sedation in a 7 T MRI system (Bruker Medical, Ettlingen, Germany). CDH was detected with a coronal multislice fast spin echo sequence with a long repetition time and short effective echo time. Oblique MPR and 3D reconstructions were used. All studies were processed with attention to the hernia and its contents and the structure of the tracheobronchial tree and the lung, the heart and great vessels, the thymus and cervico-thoracic vertebrae. The findings in both groups were compared.

Results

Congenital diaphragmatic hernia, lung hypoplasia and parenchymal features were clearly depicted. Tracheal ring anomalies were also demonstrated. The thymus was significantly smaller in CDH pups (2.9 × 1 × 2.4 mm) than in controls (4 × 1.3 × 2.8 mm) (p < 0.01). MRI was particularly performant for imaging cardiovascular anomalies: 4 double aortic arches, 3 Fallots, 3 right aortic arches, 3 ventricular septal defects and 1 aberrant subclavian artery.

Conclusions

Microscopic magnetic resonance involves refined and expensive equipment but it provides a powerful research tool for the study of CDH and other malformations in rat fetuses. Further work on this area is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tovar JA (2007) Stephen L. Gans distinguished overseas lecture. The neural crest in pediatric surgery. J Pediatr Surg 42(6):915–926

    Article  PubMed  Google Scholar 

  2. Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lambrecht W (1990) Nitrofen-induced diaphragmatic hernias in rats: an animal model. J Pediatr Surg 25(8):850–854

    Article  CAS  PubMed  Google Scholar 

  3. Tenbrinck R, Tibboel D, Gaillard JL, Kluth D, Bos AP, Lachmann B, Molenaar JC (1990) Experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg 25(4):426–429

    Article  CAS  PubMed  Google Scholar 

  4. Tenbrinck R, Gaillard JL, Tibboel D, Kluth D, Lachmann B, Molenaar JC (1992) Pulmonary vascular abnormalities in experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg 27(7):862–865

    Article  CAS  PubMed  Google Scholar 

  5. Alfonso LF, Vilanova J, Aldazabal P, Lopez de Torre B, Tovar JA (1993) Lung growth and maturation in the rat model of experimentally induced congenital diaphragmatic hernia. Eur J Pediatr Surg 3(1):6–11

    Article  CAS  PubMed  Google Scholar 

  6. Kluth D, Keijzer R, Hertl M, Tibboel D (1996) Embryology of congenital diaphragmatic hernia. Semin Pediatr Surg 5(4):224–233

    CAS  PubMed  Google Scholar 

  7. Kim WG, Suh JW, Chi JG (1999) Nitrofen-induced congenital malformations of the heart and great vessels in rats: an animal model. J Pediatr Surg 34(12):1782–1786

    Article  CAS  PubMed  Google Scholar 

  8. Losty PD, Connell MG, Freese R, Laval S, Okoye BO, Smith A, Kluth D, Lloyd DA (1999) Cardiovascular malformations in experimental congenital diaphragmatic hernia. J Pediatr Surg 34(8):1203–1207

    Article  CAS  PubMed  Google Scholar 

  9. Migliazza L, Otten C, Xia H, Rodriguez JI, Diez-Pardo JA, Tovar JA (1999) Cardiovascular malformations in congenital diaphragmatic hernia: human and experimental studies. J Pediatr Surg 34(9):1352–1358

    Article  CAS  PubMed  Google Scholar 

  10. Migliazza L, Xia H, Alvarez JI, Arnaiz A, Diez-Pardo JA, Alfonso LF, Tovar JA (1999) Heart hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 34(5):706–710 (discussion 710–701)

    Article  CAS  PubMed  Google Scholar 

  11. Xia H, Migliazza L, Diez-Pardo JA, Tovar JA (1999) The tracheobronchial tree is abnormal in experimental congenital diaphragmatic hernia. Pediatr Surg Int 15(3–4):184–187

    Article  CAS  PubMed  Google Scholar 

  12. Yu J, Gonzalez S, Rodriguez JI, Diez-Pardo JA, Tovar JA (2001) Neural crest-derived defects in experimental congenital diaphragmatic hernia. Pediatr Surg Int 17(4):294–298

    Article  CAS  PubMed  Google Scholar 

  13. Pederiva F, Rodriguez JI, Ruiz-Bravo E, Martinez L, Tovar JA (2009) Abnormal intrinsic esophageal innervation in congenital diaphragmatic hernia: a likely cause of motor dysfunction. J Pediatr Surg 44(3):496–499

    Article  PubMed  Google Scholar 

  14. Pederiva F, Lopez RA, Martinez L, Tovar JA (2009) Tracheal innervation is abnormal in rats with experimental congenital diaphragmatic hernia. J Pediatr Surg 44(6):1159–1164

    Article  PubMed  Google Scholar 

  15. Martinez L, Pederiva F, Martinez-Calonge W, Aras-Lopez R, Tovar JA (2009) The myenteric plexus of the esophagus is abnormal in an experimental congenital diaphragmatic hernia model. Eur J Pediatr Surg 19(3):163–167

    Article  CAS  PubMed  Google Scholar 

  16. Pederiva F, Rodriguez JI, Ruiz-Bravo El, Martinez L, Tovar JA (2008) Abnormal intrinsic esophageal innervation in congenital diaphragmatic hernia. A likely cause of motor dysfunction. J Pediatr Surg 44(3):496–499

    Article  Google Scholar 

  17. Pederiva F, Aras Lopez R, Martinez L, Tovar JA (2008) Abnormal development of tracheal innervation in rats with experimental diaphragmatic hernia. Pediatr Surg Int 24(12):1341–1346

    Article  PubMed  Google Scholar 

  18. Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. MAGMA 17(3–6):149–156

    Article  PubMed  Google Scholar 

  19. Orita J, Sato E, Saburi S, Nishida T, Toyoda Y (1996) Magnetic resonance imaging of the internal structure of the mouse fetus. Exp Anim 45(2):171–174

    Article  CAS  PubMed  Google Scholar 

  20. Hogers B, Gross D, Lehmann V, Zick K, De Groot HJ, Gittenberger-De Groot AC, Poelmann RE (2000) Magnetic resonance microscopy of mouse embryos in utero. Anat Rec 260(4):373–377

    Article  CAS  PubMed  Google Scholar 

  21. Schneider JE, Bamforth SD, Farthing CR, Clarke K, Neubauer S, Bhattacharya S (2003) High-resolution imaging of normal anatomy, and neural and adrenal malformations in mouse embryos using magnetic resonance microscopy. J Anat 202(2):239–247

    Article  PubMed  Google Scholar 

  22. Schneider JE, Bamforth SD, Grieve SM, Clarke K, Bhattacharya S, Neubauer S (2003) High-resolution, high-throughput magnetic paragraph sign resonance imaging of mouse embryonic paragraph sign anatomy using a fast gradient-echo sequence. MAGMA 16(1):43–51

    Article  PubMed  Google Scholar 

  23. Dhenain M, Ruffins SW, Jacobs RE (2001) Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 232(2):458–470

    Article  CAS  PubMed  Google Scholar 

  24. Petiet A, Hedlund L, Johnson GA (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imag 25(6):1192–1198

    Article  Google Scholar 

  25. Schneider JE, Bamforth SD, Farthing CR, Clarke K, Neubauer S, Bhattacharya S (2003) Rapid identification and 3D reconstruction of complex cardiac malformations in transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging. J Mol Cell Cardiol 35(2):217–222

    Article  CAS  PubMed  Google Scholar 

  26. Schneider JE, Bose J, Bamforth SD, Gruber AD, Broadbent C, Clarke K, Neubauer S, Lengeling A, Bhattacharya S (2004) Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev Biol 4:16

    Article  PubMed  Google Scholar 

  27. Schneider JE, Bhattacharya S (2004) Making the mouse embryo transparent: identifying developmental malformations using magnetic resonance imaging. Birth Defects Res C Embryo Today 72(3):241–249

    Article  CAS  PubMed  Google Scholar 

  28. Hoydu AK, Kitano Y, Kriss A, Hensley H, Bergey P, Flake A, Hubbard A, Leigh JS Jr (2000) In vivo, in utero microscopic magnetic resonance imaging: application in a rat model of diaphragmatic hernia. Magn Reson Med 44(2):331–335

    Article  CAS  PubMed  Google Scholar 

  29. Danzer E, Schwarz U, Wehrli S, Radu A, Adzick NS, Flake AW (2005) Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Exp Neurol 194(2):467–475

    Article  CAS  PubMed  Google Scholar 

  30. Aoki I, Wu YJ, Silva AC, Lynch RM, Koretsky AP (2004) In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22(3):1046–1059

    Article  PubMed  Google Scholar 

  31. Schwindt W, Burke M, Pillekamp F, Luhmann HJ, Hoehn M (2004) Functional magnetic resonance imaging and somatosensory evoked potentials in rats with a neonatally induced freeze lesion of the somatosensory cortex. J Cereb Blood Flow Metab 24(12):1409–1418

    Article  PubMed  Google Scholar 

  32. Meng S, Qiao M, Scobie K, Tomanek B, Tuor UI (2006) Evolution of magnetic resonance imaging changes associated with cerebral hypoxia–ischemia and a relatively selective white matter injury in neonatal rats. Pediatr Res 59(4 Pt 1):554–559

    Article  PubMed  Google Scholar 

  33. Fau S, Po C, Gillet B, Sizonenko S, Mariani J, Meric P, Charriaut-Marlangue C (2007) Effect of the reperfusion after cerebral ischemia in neonatal rats using MRI monitoring. Exp Neurol 208(2):297–304

    PubMed  Google Scholar 

  34. Wideroe M, Olsen O, Pedersen TB, Goa PE, Kavelaars A, Heijnen C, Skranes J, Brubakk AM, Brekken C (2009) Manganese-enhanced magnetic resonance imaging of hypoxic–ischemic brain injury in the neonatal rat. Neuroimage 45(3):880–890

    Article  PubMed  Google Scholar 

  35. Huang GY, Wessels A, Smith BR, Linask KK, Ewart JL, Lo CW (1998) Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development. Dev Biol 198(1):32–44

    Article  CAS  PubMed  Google Scholar 

  36. Smith BR (2001) Magnetic resonance microscopy in cardiac development. Microsc Res Tech 52(3):323–330

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Wu EX (2009) MR study of postnatal development of myocardial structure and left ventricular function. J Magn Reson Imag 30(1):47–53

    Article  CAS  Google Scholar 

  38. Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171

    Article  PubMed  Google Scholar 

  39. Petiet AE, Kaufman MH, Goddeeris MM, Brandenburg J, Elmore SA, Johnson GA (2008) High-resolution magnetic resonance histology of the embryonic and neonatal mouse: a 4D atlas and morphologic database. Proc Natl Acad Sci USA 105(34):12331–12336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by FIS (06/0486 and 06/0447), FIBHULP and FMM Grants and by the Spanish Health Institute Carlos III (grant no. RD08/0072: Maternal, Child Health and Development Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Tovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bret, M., Luis, A.L., Cuesta, E. et al. Microscopic magnetic resonance in congenital diaphragmatic hernia and associated malformations in rats. Pediatr Surg Int 26, 51–57 (2010). https://doi.org/10.1007/s00383-009-2518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-009-2518-4

Keywords

Navigation