Skip to main content

Advertisement

Log in

Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Early intestinal adaptation after massive small bowel resection (SBR) is driven by increased epithelial cell (EC) proliferation. There is a clear clinical difference in the post-operative course of patients after the loss of proximal (P) compared to distal (D) small bowel. This study examined the effects of the site of SBR on post-resectional intestinal adaptation, and investigated the potential mechanisms involved. C57BL/6J mice (n = 7/group) underwent: (1) 60% P-SBR, (2) 60% D-SBR, (3) 60% mid (M)-SBR and (4) SHAM-operation (transection/reanastomosis). Mice were sacrificed at 7 days after surgery and ECs and adjacent mucosal lymphocytes (IELs) isolated. Adaptation was assessed in both jejunum and ileum by quantification of villus height, crypt depth, villus cell size, crypt cell size (microns), goblet cell number, and EC proliferation (%BrdU incorporation). Proliferation signalling pathways including keratinocyte growth factor (KGF)/KGFR1, IL-7/IL-7R, and epidermal growth factor receptor (EGFR) were measured by RT-PCR. Expression of IL-7 was further analysed by immunofluorescence. Data were analyzed using ANOVA. All three SBR models led to significant increases in villus height, crypt depth, goblet cell numbers and EC proliferation rate when compared to respective SHAM groups. The strongest morphometric changes were found for jejunal segments after M-SBR and for ileal segments after P-SBR. Furthermore, morphometric analysis showed that at 1-week post-resection a tremendous increase in EC numbers occurred in jejunal villi (cell hyperplasia), whereas a significant increase in EC size predominated in ileal villi (cell hypertrophy). mRNA expression of KGF, KGFR1, IL-7R, and EGFR showed a significant increase only after D-SBR, whereas IL-7 increased significantly after SBR in all investigated models, and this was confirmed by immunofluorescence studies. Early intestinal adaptation shows distinct differences depending on the site of SBR, and is predominately driven by cell hyperplasia in jejunal villi and cell hypertrophy in ileal villi. However, the exact mechanisms, which guide these signalling pathways are still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoellwarth ME (1999) Short bowel syndrome: pathophysiological and clinical aspects. Pathophysiology 6:1–19

    Article  Google Scholar 

  2. Buchman AL (2006) Etiology and initial management of short bowel syndrome. Gastroenterology 130:S5–S15

    Article  PubMed  CAS  Google Scholar 

  3. Williamson RCN (1978) Intestinal adaptation (first of two parts): structural, functional and cytokinetic changes. N Engl J Med 298:1393–1402

    Article  PubMed  CAS  Google Scholar 

  4. Nygaard K (1967) Resection of the small intestine in rats. III. Morphological changes in the intestinal tract. Acta Chir Scand 133:233–248

    PubMed  CAS  Google Scholar 

  5. Bristol JB, Williamson RCN (1988) Nutrition, operations and intestinal adaptation. JPEN J Parenter Enteral Nutr 12:299–309

    PubMed  CAS  Google Scholar 

  6. Spencer AU, Neaga A, West B, Safran J, Brown P, Btaiche I, Kuzma-O’Reilly B, Teitelbaum DH (2005) Pediatric short bowel syndrome: redefining predictors of success. Ann Surg 242:403–412

    PubMed  Google Scholar 

  7. Hanson WR, Osborne JW, Sharp JG (1977) Compensation by the residual intestine after intestinal resection in the rat. I. Influence of the amount of tissue removed. Gastroenterology 72:701–705

    PubMed  CAS  Google Scholar 

  8. Weser E, Hernandez MH (1971) Studies of small bowel adaptation after intestinal resection in the rat. Gastroenterology 60:69–75

    PubMed  CAS  Google Scholar 

  9. Weaver L, Austin S, Cole TJ (1991) Small intestinal length: a factor essential for gut adaptation. Gut 32:1321–1323

    PubMed  CAS  Google Scholar 

  10. Dowling RH, Booth CC (1967) Structural and functional changes following small intestinal resection in the rat. Clin Sci 32:139–149

    PubMed  CAS  Google Scholar 

  11. Appleton GVN, Bristol JB, Williamson RCN (1987) Proximal enterectomy provides a stronger systemic stimulus to intestinal adaptation than distal enterectomy. Gut 28:165–168

    PubMed  Google Scholar 

  12. Haxhija EQ, Yang H, Spencer AU, Sun X, Teitelbaum DH (2006) Influence of the site of small bowel resection on intestinal epithelial cell apoptosis. Pediatr Surg Int 22:37–42

    Article  PubMed  Google Scholar 

  13. Jeejeebhoy KN (2006) Management of short bowel syndrome: avoidance of total parenteral nutrition. Gastroenterology 130:S60–S66

    Article  PubMed  CAS  Google Scholar 

  14. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Path 78:219–243

    Article  CAS  Google Scholar 

  15. Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107:3569–3577

    PubMed  CAS  Google Scholar 

  16. Potten CS (1997) Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol 273:G253–G257

    PubMed  CAS  Google Scholar 

  17. Helmrath MA, Erwin CR, Shin CE, Warner BW (1998) Enterocyte apoptosis is increased following small bowel resection. J Gastroenterol 2:44–49

    CAS  Google Scholar 

  18. Thompson JS, Barent B (1999) Effects of intestinal resection on intestinal apoptosis. J Gastrointest Surg 3:672–677

    Article  PubMed  CAS  Google Scholar 

  19. Juno RJ, Knott AW, Erwin CR, Warner BW (2003) A serum factor(s) after small bowel resection induces intestinal epithelial cell proliferation: effects of timing, site and extent of resection. J Pediatr Surg 38:868–874

    Article  PubMed  Google Scholar 

  20. Stern LE, Huang F, Kemp JC, Falcone RA, Erwin CR, Warner BW (2000) Bax is required for increased enterocyte apoptosis after massive small bowel resection. Surgery 128:165–170

    Article  PubMed  CAS  Google Scholar 

  21. Tang Y, Swartz-Basile DA, Swietlicki EA, Yi L, Rubin DC, Levin MS (2004) Bax is required for resection-induced changes in apoptosis, proliferation, and members of the extrinsic cell death pathways. Gastroenterology 126:220–230

    Article  PubMed  CAS  Google Scholar 

  22. Wildhaber BE, Yang H, Haxhija EQ, Spencer AU, Teitelbaum DH (2005) Intestinal intraepithelial lymphocyte derived angiotensin converting enzyme modulates epithelial cell apoptosis. Apoptosis 10:1305–1315

    Article  PubMed  CAS  Google Scholar 

  23. Bernal NP, Stehr W, Profitt S, Erwin CR, Warner BW (2006) Combined pharmacotherapy that increases proliferation and decreases apoptosis optimally enhances intestinal adaptation. J Pediatr Surg 41:719–724

    Article  PubMed  Google Scholar 

  24. Yang H, Wildhaber BE, Teitelbaum DH (2003) 2003 Harry M. Vars Research Award. Keratinocyte growth factor improves epithelial function after massive small bowel resection. JPEN J Parenter Enteral Nutr 27:198–207

    PubMed  CAS  Google Scholar 

  25. Boismenu R, Havran WL (1994) Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 266:1253–1255

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Wildhaber B, Tazuke Y, Teitelbaum DH (2002) 2002 Harry M. Vars Research Award. Keratinocyte growth factor stimulates the recovery of epithelial structure and function in a mouse model of total parenteral nutrition. JPEN J Parenter Enteral Nutr 26:333–341

    PubMed  CAS  Google Scholar 

  27. Yang H, Antony PA, Wildhaber BE, Teitelbaum DH (2004) Intestinal intraepithelial lymphocyte γδ-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol 172:4151–4158

    PubMed  CAS  Google Scholar 

  28. Yang H, Spencer AU, Teitelbaum DH (2005) Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine 31:419–428

    Article  PubMed  CAS  Google Scholar 

  29. Yang H, Fan Y, Finaly R, Teitelbaum DH (2003) Alteration of intestinal intraepithelial lymphocytes after massive small bowel resection. J Surg Res 110:276–286

    Article  PubMed  Google Scholar 

  30. Olubuyide IO, Williamson RC, Bristol JB, Read AE (1984) Goblet cell hyperplasia is a feature of the adaptive response to jejunoileal bypass in rats. Gut 25:62–68

    PubMed  CAS  Google Scholar 

  31. Jarboe MD, Juno RJ, Stehr W, Bernal NP, Profitt S, Erwin CR, Warner BW (2005) Epidermal growth factor receptor signaling regulates goblet cell production after small bowel resection. J Pediatr Surg 40:92–97

    Article  PubMed  Google Scholar 

  32. Watanabe M, Ueno Y, Yajima T, Iwao Y, Tsuchiya M, Ishikawa H, Aiso S, Hibi T, Ishii H (1995) Interleukin-7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 95:2945–2953

    PubMed  CAS  Google Scholar 

  33. Ljungmann K, Hartmann B, Kissmeyer-Nielsen P, Flyvbjerg A, Holst JJ, Laurberg S (2001) Time-dependent intestinal adaptation and GLP-2 alterations after small bowel resection in rats. Am J Physiol Gastrointest Liver Physiol 281:G779–G785

    PubMed  CAS  Google Scholar 

  34. Vanderhoof JA, Langnas NA (1997) Short-bowel syndrome in children and adults. Gastroenterology 113:1767–1778

    Article  PubMed  CAS  Google Scholar 

  35. Ziegler TR, Mantell MP, Chow JC, Rombeau JL, Smith RJ (1998) Intestinal adaptation after extensive small bowel resection: differential changes in growth and insulin-like growth factor system messenger ribonucleic acids in jejunum and ileum. Endocrinology 139:3119–3126

    PubMed  CAS  Google Scholar 

  36. Thulesen J, Hartmann B, Kissow H, Jeppesen PB, Orskov C, Holst JJ, Poulsen SS (2001) Intestinal growth adaptation and glucagon-like peptide-2 in rats with ileal-jejunal transposition or small bowel resection. Dig Dis Sci 46:379–388

    Article  PubMed  CAS  Google Scholar 

  37. Jepessen PB (2006) Glucagon-like peptide-2: update of the recent clinical trials. Gastroenterology 130:S127–S131

    Article  CAS  Google Scholar 

  38. Morla AO, Mogford JE (2000) Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase. Biochem Biophys Res Commun 272:298–302

    Article  PubMed  CAS  Google Scholar 

  39. Wang HT, Miller JH, Avissar N, Sax HC (1999) Small bowel adaptation is dependent on site of massive enterectomy. J Surg Res 84:94–100

    Article  PubMed  CAS  Google Scholar 

  40. Watanabe M, Yamazaki M, Okamoto R, Ohoka S, Araki A, Nakamura T, Kanai T (2003) Therapeutic approaches to chronic intestinal inflammation by specific targeting of mucosal IL-7/IL-7R signal pathway. Curr Drug Targets Inflamm Allergy 2:119–123

    Article  PubMed  CAS  Google Scholar 

  41. Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, Aukerman SL, Devine PL, Whitehead RH, Pierce GF (1994) Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J Clin Invest 94:1764–1777

    Article  PubMed  CAS  Google Scholar 

  42. Stern LE, Erwin CR, O’Brien DP, Huang F, Warner BW (2000) Epidermal growth factor is critical for intestinal adaptation following small bowel resection. Microsc Res Tech 51:138–148

    Article  PubMed  CAS  Google Scholar 

  43. Helmrath MA, Erwin CR, Warner BW (1997) A defective EGF-receptor in waved-2 mice attenuates intestinal adaptation. J Surg Res 69:76–80

    Article  PubMed  CAS  Google Scholar 

  44. Yang H, Teitelbaum DH (2006) Novel agents in the treatment of intestinal failure: humoral factors. Gastroenterology 130:S117–S121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dorothy Sorenson from the Microscopy and Image Analysis Laboratory of the Department of Cell and Developmental Biology, University of Michigan, for her assistance with transmission electron microscopy. This research was supported by National Institutes of Health Grant 2R01-AI044076 and 2P30 DK34933. The work was also supported in part by the University of Michigan-Comprehensive Cancer Center National Institutes of Health Grant 5 P30 CA46592, and the University of Michigan-Multipurpose Arthritic Center National Institutes of Health Grant AR20557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Teitelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haxhija, E.Q., Yang, H., Spencer, A.U. et al. Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection. Pediatr Surg Int 23, 379–390 (2007). https://doi.org/10.1007/s00383-006-1855-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-006-1855-9

Keywords

Navigation