Skip to main content
Log in

Moisture sources for the genesis of tropical cyclones over the Bay of Bengal using the lagrangian FLEXPART model

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sources of moisture-feeding for the incipient tropical cyclones (TCs) over the Bay of Bengal (BoB) are least explored. Using a three-dimensional Lagrangian model running with NCEP-FNL data, the present work identified various source locations and major transport routes that contributed moisture to pre- and post-monsoon TCs genesis (TCG) over the BoB. The clustered mean trajectories identified using the k-means method demonstrated that moisture transport towards the TCG region during pre-monsoon is dominated by intense low-level westerly/south-westerly trajectories propagating across the North Indian Ocean covering the Somalia coast and the Arabian Sea. Meanwhile, during post-monsoon, north-easterly/easterly trajectories are more prevalent and bring moisture to the BoB TCG region from the South China Sea and North-West Pacific. Moreover, the study highlights the spatiotemporal variations of moisture uptake (MU) pattern and its contribution and demonstrates that robust MU with a contribution of 20–90% occurs locally before three days of TCG. Meanwhile, remote sources contribute a moisture amount of ≤ 20%. Furthermore, the composite analysis of different diagnostic parameters confirms that identified MU at the local scale is attributed to an evaporation process in association with a dynamic uplifting mechanism caused by an anomalous cyclonic circulation, which provides moisture for TCG, while the horizontal advection is the mechanism, which gradually builds moisture required for the TCG from the remote sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All observed and reanalysis dataset used in this study are freely available for public. RMSC IMD TCs best tracks datasets were obtained from https://rsmcnewdelhi.imd.gov.in/. The ECMWF-ERA5 data were retrieved from https://cds.climate.copernicus.eu/. The NCEP-FNL analysis data used in the study are accessed from RDA, UCAR, NCAR USA (https://rda.ucar.edu/). The FLEXPART model can be obtained from https://www.flexpart.eu/wiki/FpRoadmap. Analysed information of this study can be provided upon reasonable request.

References

  • Akter N, Tsuboki K (2012) Numerical simulation of cyclone Sidr using a cloud-resolving model: characteristics and formation process of an outer rainband. Mon Weather Rev 140:789–810. https://doi.org/10.1175/2011MWR3643.1

    Article  Google Scholar 

  • Akter N, Tsuboki K (2014) Role of synoptic scale forcing in cyclogenesis over the Bay of Bengal. Clim Dyn 43:2651–2662. https://doi.org/10.1007/s00382-014-2077-9

    Article  Google Scholar 

  • Albert J, Bhaskaran PK (2020) Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Clim Dyn 55(11–12):3343–3362. https://doi.org/10.1007/s00382-020-05450-9

    Article  Google Scholar 

  • Aliaga D, Sinclair VA, Andrade M, Artaxo P, Carbone S, Kadantsev E, Laj P, Wiedensohler A, Krejci R, Bianchi F (2021) Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis. Atmos Chem Phys 21(21):16453–16477. https://doi.org/10.5194/acp-21-16453-2021

    Article  CAS  Google Scholar 

  • Alvarez-Socorro G, Fernández-Alvarez JC, Nieto R (2023) Moisture Source Analysis of Two Case Studies of Major Extreme precipitation events in summer in the Iberian Peninsula. Atmosphere 14(8):1213. https://doi.org/10.3390/atmos14081213

    Article  Google Scholar 

  • Anandh PC, Vissa NK (2020) On the linkage between extreme rainfall and the Madden–Julian Oscillation over the Indian region. Meteorol Appl 27(2):e1901. https://doi.org/10.1002/met.1901

  • Anandh PC, Vissa NK (2022) Role of synoptic circulations, mechanisms and precursors during extreme rainfall events over the southern Indian Peninsula. Meteorol Atmos Phys 134:27. https://doi.org/10.1007/s00703-022-00862-0

  • Basha G, Ratnam MV (2013) Moisture variability over Indian monsoon regions observed using high resolution radiosonde measurements. Atmos Res 132:35–45

  • Batibeniz F, Ashfaq M, Önol B, Turuncoglu UU, Mehmood SS, Evans KJ (2020) Identification of major moisture sources across the Mediterranean Basin. Clim Dyn 54(9–10):4109–4127. https://doi.org/10.1007/s00382-020-05224-3

    Article  Google Scholar 

  • Bevacqua E, Vousdoukas MI, Zappa G, Hodges K, Shepherd TG, Maraun D, Mentaschi L, Feyen L (2020) More meteorological events that drive compound coastal flooding are projected under climate change. Commun Earth Environ 1:1–11. https://doi.org/10.1038/s43247-020-00044-z

    Article  Google Scholar 

  • Bhaskaran PK, Rao AD, Murty T (2020) Tropical Cyclone–induced storm surges and wind waves in the Bay of Bengal. Techniques for disaster risk management and mitigation. Wiley, New York, pp 237–294. https://doi.org/10.1002/9781119359203.ch17

    Chapter  Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6(6):1077–1089

    Article  Google Scholar 

  • Cao X, Wu R, Wang Z, Lan X, Sun Y, Zhao J, Du Z (2023) A zonal see-saw variation of tropical cyclogenesis over the Arabian Sea and Bay of Bengal-South China Sea. J Geophys Res Atmos 128(17). https://doi.org/10.1029/2023JD038890. e2023JD038890

  • Chen J, Mai C, Zhou M, Chen S, Li W, Fang R, Zhao Z (2021) Influence of water vapor distribution on the simulated track of Typhoon Hato (2017). Nat Hazards 109:2363–2380

    Article  Google Scholar 

  • Choudhury D, Nath D, Chen W (2019) Impact of Indian Ocean warming on increasing trend in pre-monsoon rainfall and Hadley circulation over Bay of Bengal. Theoret Appl Climatol 137:2595–2606

    Article  Google Scholar 

  • Cloux S, Garaboa-Paz D, Insua-Costa D, Miguez-Macho G, Pérez-Muñuzuri V (2021) Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification. Hydrol Earth Syst Sci 25(12):6465–6477

    Article  Google Scholar 

  • Coll-Hidalgo P, Pérez-Alarcón A, Fernández-Alvarez JC, Nieto R, Gimeno L (2021) Moisture sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environ Sci Proc 8(1):19

    Google Scholar 

  • Das PK (1995) The monsoons. National Book Trust of India, New Delhi

    Google Scholar 

  • Deshpande M, Singh VK, Ganadhi MK, Roxy MK, Emmanuel R, Kumar U (2021) Changing status of tropical cyclones over the north. Indian Ocean Clim Dyn 57(11):3545–3567. https://doi.org/10.1007/s00382-021-05880-z

    Article  Google Scholar 

  • Dey D, Döös K (2021) Tracing the origin of the south Asian summer monsoon precipitation and its variability using a novel Lagrangian framework. J Clim 34(21):8655–8668

    Article  Google Scholar 

  • Dominguez F, Kumar P, Liang XZ, Ting M (2006) Impact of atmospheric moisture storage on precipitation recycling. J Clim 19(8):1513–1530

    Article  Google Scholar 

  • Dorling S, Davies T, Pierce C (1992) Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry—method and applications. Atmos Environ Part Gen Top 26(14):2575–2581

    Article  Google Scholar 

  • Drumond A, Nieto R, Hernandez E, Gimeno L (2011) A lagrangian analysis of the variation in moisture sources related to drier and wetter conditions in regions around the Mediterranean Basin. Nat Hazards Earth Syst Sci 11:2307–2320. https://doi.org/10.5194/nhess-11-2307-2011

    Article  Google Scholar 

  • Dube SK, Rao AD, Poulose J, Mohapatra M, Murty TS (2014) Storm surge inundation in South Asia under climate change scenarios. In: Monitoring and prediction of tropical cyclones in the Indian Ocean and climate change. Springer: Dordrecht 355–63. https://doi.org/10.1007/978-94-007-7720-0_30

  • Durán-Quesada AM, Gimeno L, Amador JA, Nieto R (2010) Moisture sources for Central America: Identification of moisture sources using a lagrangian analysis technique. J Geophys Res Atmos 115:D05–103. https://doi.org/10.1029/2009JD012455

  • Emanuel K (2018) 100 years of progress in tropical cyclone research. Meteorol Monogr 59. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1. 15.1-15.68

  • Emanuel K, De Autels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Article  Google Scholar 

  • Fleming ZL, Monks PS, Manning AJ (2012) Review: untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39

    Article  Google Scholar 

  • Fritz C, Wang Z (2013) A numerical study of the impacts of dry air on tropical cyclone formation: a development case and a nondevelopment case. J Atmoc Sci 70:91–111

    Article  Google Scholar 

  • Fudeyasu H, Hirose S, Yoshioka H, Kumazawa R, Yamasaki S (2014) A global view of the landfall characteristics of tropical cyclones. Trop Cyclones Res Rev 3:178–192

    Google Scholar 

  • Fujiwara K, Kawamura R, Hirata H, Kawano T, Kato M, Shinoda T (2017) A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J Geophys Res Atmos 122(23):12–502

    Article  Google Scholar 

  • Gao S, Zhai S, Chen B, Li T (2017) Water budget and intensity change of tropical cyclones over the western North Pacific. Mon Weather Rev 145(8):3009–3023. https://doi.org/10.1175/MWR-D-17-0033.1

    Article  Google Scholar 

  • Gao S, Mao W, Zhang, Zhang F, Shen X (2021) Atmospheric moisture shapes increasing tropical cyclone precipitation in southern China over the past four decades. Environ Res Lett 16:034004. https://doi.org/10.1088/1748-9326/abd78a

    Article  Google Scholar 

  • Ge X, Li T, Peng M (2013) Effects of vertical shears and midlevel dry air on tropical cyclone developments. J Atmos Sci 70:3859–3875. https://doi.org/10.1175/JAS-D-13-066.1

    Article  Google Scholar 

  • Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:RG4003. https://doi.org/10.1029/2012RG000389

    Article  Google Scholar 

  • Gimeno L, Dominguez F, Nieto R, Trigo R, Drumond A, Reason CJC, Taschetto A, Ramos A, Ramesh Kumar M, Marengo J (2016) Major mechanisms of atmospheric moisture transport and their role in extreme precipitation. Annu Rev Environ Resour 41:117–141. https://doi.org/10.1146/annurev-environ-110615-085558

    Article  Google Scholar 

  • Gimeno L, Vázquez M, Eiras-Barca J, Sorí R, Stojanovic M, Algarra I, Nieto R, Ramos AM, Durán-Quesada AM, Dominguez F (2020) Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Sci Rev 201:103070. https://doi.org/10.1016/j.earscirev.2019.103070

    Article  Google Scholar 

  • Gimeno L, Eiras-Barca J, Durán-Quesada AM, Dominguez F, van der Ent R, Sodemann H, Sánchez-Murillo R, Nieto R, Kirchner JW (2021) The residence time of water vapour in the atmosphere. Nat Rev Earth Environ 2(8):558–569. https://doi.org/10.1038/s43017-021-00181-9

    Article  Google Scholar 

  • Gómez-Hernández M, Drumond A, Gimeno L, Garcia-Herrera R (2013) Variability of moisture sources in the Mediterranean region during the period 1980–2000. Water Resourc Res 49:6781–6794. https://doi.org/10.1002/wrcr.20538

    Article  Google Scholar 

  • Gorja MMK, Gulakaram VS, Vissa NK, Viswanadhapalli Y, Tyagi B (2023b) Analysis of Large-Scale Environmental Features during Maximum Intensity of Tropical cyclones using Reanalysis Data. Atmosphere 14(2):333

    Article  Google Scholar 

  • Gorja MMK, Challa VS, Viswanadhapalli Y, Vissa NK, Balasubramanian V (2023a) Sensitivity of cloud microphysics on the simulation of heavy rainfall in WRF-a case study for the 7–10 August 2019 event over Kerala, India. Atmos Res 288:106715

    Article  Google Scholar 

  • Govender P, Sivakumar V (2020) Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmos Pollut Res 1:40–56. https://doi.org/10.1016/j.apr.2019.09.009

    Article  CAS  Google Scholar 

  • Gozzo LF, da Rocha RP, Reboita MS, Sugahara S (2014) Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study. J Clim 27(22):8543–8562. https://doi.org/10.1175/JCLI-D-14-00149.1

    Article  Google Scholar 

  • Gozzo LF, da Rocha RP, Gimeno L, Drumond A (2017) Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J Geophys Res Atmos 122:5636–5653

    Article  Google Scholar 

  • Gray WM (1998) The formation of tropical cyclones. Meteorol Atmos Phys 67:37–69. https://doi.org/10.1007/BF01277501

    Article  Google Scholar 

  • Guo B, Ge X (2018) Monsoon trough influences on multiple tropical cyclones events in the western North Pacific. Atmos Sci Lett 19(9):e851. https://doi.org/10.1002/asl.851

    Article  Google Scholar 

  • Guo L, Klingaman NP, Demory M-E, Vidale PL, Turner AG, Stephan CC (2018) The contributions of local and remote atmospheric moisture fluxes to east Asian precipitation and its variability. Clim Dyn 51(11):4139–4156

    Article  Google Scholar 

  • He Y, Tian W, Huang J, Wang G, Ren Y, Yan H, Yu H, Guan X, Hu H (2021) The mechanism of increasing summer water vapor over the Tibetan Plateau. J Geophys Res Atmos 126(10):e2020JD034166

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hill K, Lackmann GM (2009) Influence of environmental humidity on tropical cyclone size. Mon Wea Rev 137:3294–3315

    Article  Google Scholar 

  • Huang H, Yang M, Sui C (2014) Water budget and precipitation efficiency of Typhoon Morakot (2009). J Atmos Sci 71:112–129. https://doi.org/10.1175/JAS-D-13-053.1

    Article  Google Scholar 

  • Jena B, Pattnaik S (2024) Interdecadal variability of the pre-monsoon cyclone characteristics over the Bay of Bengal. Environmental Research:Climate

  • Jiang Z, Jiang S, Shi Y, Liu Z, Li W, Li L (2017) Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J Geophys Res Atmos 122:600–613

    Article  Google Scholar 

  • Kikuchi K, Wang B (2010) Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J Meteorol Soc Jpn 88:475–496

    Article  Google Scholar 

  • Koppa A, Keune J, MacLeod DA, Singer M, Nieto R, Gimeno L, Michaelides K, Rosolem R, Otieno G, Tadege A, Miralles DG (2022) A lagrangian analysis of the sources of rainfall over the Horn of Africa Drylands. J Geophys Res Atmos 128(12):e2022JD038408

    Article  Google Scholar 

  • Kunze S (2021) Unraveling the effects of tropical cyclones on economic sectors worldwide: direct and indirect impacts. Environ Resource Econ 78:545–569

    Article  Google Scholar 

  • Läderach A, Sodemann H (2016) A revised picture of the atmospheric moisture residence time. Geophys Res Lett 43:924–933. https://doi.org/10.1002/2015GL067449

    Article  Google Scholar 

  • Lai Y, Li J, Gu X, Liu C, Chen YD (2021) Global compound floods from precipitation and storm surge: hazards and the roles of cyclones. J Clim 34(20):8319–8339

    Google Scholar 

  • Li Z, Yu W, Li T, Murty VSN, Tangang F (2013) Bimodal character of cyclone climatology in the bay of Bengal modulated by monsoon seasonal cycle. J Clim 26:1033–1046. https://doi.org/10.1175/JCLI-D-11-00627.1

    Article  Google Scholar 

  • Li Z, Li T, Yu W, Li K, Liu Y (2016) What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post-monsoon peak season? Atmospheric Sci Lett 17(2):148–154

    Article  Google Scholar 

  • Li Z, Yu WD, Li KP, Wang HW, Liu YL (2019a) Environmental conditions modulating tropical cyclone formation over the Bay of Bengal during the Pre-monsoon transition period. J Clim 32:4387–4394

    Article  Google Scholar 

  • Li Z, Li T, Yu WD (2019b) Environmental conditions regulating the formation of super tropical cyclone during pre-monsoon transition period over Bay of Bengal. Clim Dyn 52:3857–3867

    Article  Google Scholar 

  • Li B, Zhou L, Wang C, Gao C, Qin J, Meng Z (2020) Modulation of tropical cyclone genesis in the Bay of Bengal by the central Indian Ocean mode. J Geophys Res Atmos 125:e2020JD032641

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Nefiodov AV, Chikunov AV, Sheil D, Nobre AD, Li B-L (2017) Fuel for cyclones: the water vapor budget of a hurricane as dependent on its movement. Atmos Res 193:216–230

    Article  Google Scholar 

  • Malakar P, Kesarkar AP, Bhate JN, Singh V, Deshamukhya A (2020) Comparison of reanalysis data sets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci 7(2):e2019EA000978

    Article  Google Scholar 

  • Matyas CJ (2017) Comparing the spatial patterns of rainfall and atmospheric moisture among tropical cyclones having a track similar to Hurricane Irene (2011). Atmosphere 8(9):165. https://doi.org/10.3390/atmos8090165

    Article  Google Scholar 

  • Mo KC, Higgins RW (1996) Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J Clim 9:1531–1545

    Article  Google Scholar 

  • Mohanty UC, Osuri KK, Pattanayak S, Sinha P (2012) An observational perspective on tropical cyclone activity over Indian seas in a warming environment. Nat Hazards 63(3):1319–1335

    Article  Google Scholar 

  • Mohapatra M, Sharma M (2015) Characteristics of surface wind structure of tropical cyclones over the North Indian Ocean. J Earth Syst Sci 124(7):1573–1598

    Article  Google Scholar 

  • Murakami H, Wang B (2022) Patterns and frequency of projected future tropical cyclone genesis are governed by dynamic effects. Commun Earth Environ 3(1):1–10

    Article  Google Scholar 

  • Murakami H, Sugi M, Kitoh A (2013) Future changes in tropical cyclone activity in the north Indian Ocean projected by the new high-resolution MRI-AGCM. Clim Dyn 40:1949–1968. https://doi.org/10.1007/978-94-007-7720-0_6

    Article  Google Scholar 

  • Naakka T, Nygård T, Vihma T (2021) Air moisture climatology and related physical processes in the Antarctic on the basis of ERA5 reanalysis. J Clim 34(11):4463–4480

    Article  Google Scholar 

  • Nadimpalli R, Srivastava A, Prasad VS, Osuri KK, Das AK, Mohanty UC, Niyogi D (2020) Impact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the Bay of Bengal. IEEE Trans Geosci Remote Sens 58:6945–6957. https://doi.org/10.1109/TGRS.2020.2978211

    Article  Google Scholar 

  • Nellipudi NR, Ramakrishna SSVS, Podeti SR, Rao BRS, Yesubabu V, Rao VB (2022) Impact of the moisture and land surface processes on the sustenance of the cyclonic storm Yemyin over land using the WRF-ARW model. Nat Hazards 114(1):495–519

    Article  Google Scholar 

  • Nieto R, Gimeno L, Gallego D, Trigo R (2007) Contributions to the moisture budget of airmasses over Iceland. Meteorol Z 16(1):37–44

    Article  Google Scholar 

  • Numaguti A (1999) Origin and recycling processes of precipitating water over the eurasian continent: experiments using an atmospheric general circulation model. J Geophys Res 104:1957–1972. https://doi.org/10.1029/1998JD20002

    Article  Google Scholar 

  • Ordóñez P, Ribera P, Gallego D, Peña-Ortiz C (2012) Major moisture sources for Western and Southern India and their role on synoptic-scale rainfall events. Hydrol Process 26:3886–3895. https://doi.org/10.1002/hyp.8455

  • Ordóñez P, Ribera P, Gallego D, Pena-Ortiz C (2013) Influence of Madden Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall. Water Resour Res 49:6474–6485. https://doi.org/10.1002/wrcr.20515

  • Patel VK, Kuttippurath J (2022) Significant increase in water vapour over India and Indian Ocean: implications for tropospheric warming and regional climate forcing. Sci Total Environ 838:155885

    Article  CAS  Google Scholar 

  • Pathak A, Ghosh S, Martinez JA, Dominguez F, Kumar P (2017) Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J Clim 30:1839–1859. https://doi.org/10.1175/jcli-d-16-0156.1

    Article  Google Scholar 

  • Peng D, Zhou T, Zhang L (2020) Moisture sources associated with precipitation during dry and wet seasons over Central Asia. J Clim 33(24):10755–10771

    Article  Google Scholar 

  • Peng D, Lin A, Liu X, Huang X, Xiao H, Li H (2023) Moisture sources of the first rainy season extreme precipitation events in the hotspots of Guangdong, South China. Int J Climatol 43(3):1480–1496

    Article  Google Scholar 

  • Perdigón-Morales J, Romero-Centeno R, Ordoñez P, Nieto R, Gimeno L, Barrett BS (2021) Influence of the Madden-Julian Oscillation on moisture transport by the Caribbean Low Level Jet during the midsummer Drought in Mexico. Atmos Res 248:105243

    Article  Google Scholar 

  • Pérez-Alarcón A, Fernández-Alvarez JC, Sorí R, Liberato ML, Trigo RM, Nieto R, Gimeno L (2023a) How much of precipitation over the Euroregion Galicia–Northern Portugal is due to tropical-origin cyclones? A lagrangian approach. Atmos Res 285:106640

    Article  Google Scholar 

  • Pérez-Alarcón A, Coll-Hidalgo P, Fernández-Alvarez JC, Trigo RM, Nieto R, Gimeno L (2023b) Climatological variations of moisture sources for precipitation of North Atlantic tropical cyclones linked to their tracks. Atmos Res 290:106778

    Article  Google Scholar 

  • Pérez-Alarcón A, Fernández-Alvarez JC, Sorí R, Nieto R, Gimeno L (2023c) Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: a Lagrangian approach. Clim Dyn 60(9–10):2735–2758. https://doi.org/10.1007/s00382-022-06429-4

    Article  Google Scholar 

  • Pérez-Alarcón A, Coll-Hidalgo P, Fernández-Alvarez JC, Trigo RM, Nieto R, Gimeno L (2023d) The rare case of Hurricane Catarina (2004) over the South Atlantic Ocean: the origin of its precipitation through a Lagrangian approach. Q J R Meteorol Soc 149(752):1038–1055

    Article  Google Scholar 

  • Pisso I, Sollum E, Grythe H, Kristiansen NI, Cassiani M, Eckhardt S, Arnold D, Morton D, Thompson RL, Zwaaftink CDG, Evangeliou N, Sodemann H, Haimberger L, Henne S, Brunner D, Burkhart JF, Fouilloux A, Brioude J, Philipp A, Seibert P, Stohl A (2019) The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci Model Dev 12(12):4955–4997

    Article  Google Scholar 

  • Prathipati VK, Viswanadhapalli Y, Chennu VN, Dasari HP (2022) Evaluation of Weather Research and forecasting model downscaled rainfall and its variability over India. Int J Climatol 42(3):1418–1444. https://doi.org/10.1002/joc.7311

    Article  Google Scholar 

  • Rajasree VPM, Routray A, George JP et al (2021) Study of cyclogenesis of developing and non-developing tropical systems of NIO using NCUM forecasting system. Meteorol Atmos Phys 133:379–397. https://doi.org/10.1007/s00703-020-00756-z

    Article  Google Scholar 

  • Rajeswari JR, Srinivas CV, Mohan PR, Venkatraman B (2020) Impact of boundary layer physics on tropical cyclone simulations in the Bay of Bengal using the WRF model. Pure Appl Geophys 177:5523–5550. https://doi.org/10.1007/s00024-020-02572-3

    Article  Google Scholar 

  • Ramakrishna SSVS, Rao NN, Rao RSB et al (2019) Impact of moisture transport and boundary layer processes on a very severe cyclonic storm using the WRF model. Pure Appl Geophys 176:5445–5461. https://doi.org/10.1007/s00024-019-02279-0

    Article  Google Scholar 

  • Ramsay HA (2017) The global climatology of tropical cyclones. Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389407.013.79

  • Ramsay HA, Camargo SJ, Kim D (2012) Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim Dyn 39:897–917. https://doi.org/10.1007/s00382-011-1225-8

    Article  Google Scholar 

  • Roman-Stork HL, Subrahmanyam B (2020) The impact of the Madden–Julian Oscillation on Cyclone Amphan (2020) and southwest monsoon onset. Remote Sens 12(18):3011. https://doi.org/10.3390/rs12183011

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):708

    Article  CAS  Google Scholar 

  • Sahoo B, Bhaskaran PK (2016) Assessment on historical cyclone tracks in the Bay of Bengal, East Coast of India. Int J Climatol 36(1):95–109

    Article  Google Scholar 

  • Siler N, Roe GH, Armour KC (2018) Insights into the zonal-mean response of the hydrologic cycle to global warming from a diffusive energy balance model. J Clim 31(18):7481–7493

    Article  Google Scholar 

  • Singh VK, Roxy MK (2022) A review of the ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth Sci Rev 16:103967. https://doi.org/10.1016/j.earscirev.2022.103967

    Article  Google Scholar 

  • Sinha N, Chakraborty S, Chattopadhyay R, Goswami BN, Mohan PM, Parua DK, Sarma D, Datye A, Sengupta S, Bera S, Baruah KK (2019) Isotopic investigation of the moisture transport processes over the Bay of Bengal. J Hydrol X 2:100021. https://doi.org/10.1016/j.hydroa.2019.100021

    Article  CAS  Google Scholar 

  • Sodemann H, Stohl A (2013) Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon Weather Rev 141(8):2850–2868

    Article  Google Scholar 

  • Sodemann H, Schwierz C, Wernli H (2008) Interannual variability of Greenland winter precipitation sources: lagrangian moisture diagnostic and north Atlantic Oscillation influence. J Geophys Res Atmos 113:D03107. https://doi.org/10.1029/2007JD008503

    Article  Google Scholar 

  • Stohl A, James P (2004) A lagrangian analysis of the atmospheric branch of the global water cycle. Part I: method description, validation, and demonstration for the August 2002 flooding in central Europe. J Hydrometeorol 5:656–678

    Article  Google Scholar 

  • Stohl A, James P (2005) A lagrangian analysis of the atmospheric branch of the global water cycle. Part ii: moisture transports between earths ocean basins and river catchments. J Hydrometeorol 6(6):961–984

    Article  Google Scholar 

  • Stohl A, Hittenberger M, Wotawa G (1998) Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos Environ 32(24):4245–4264

    Article  CAS  Google Scholar 

  • Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474. https://doi.org/10.5194/acp-5-2461-2005

    Article  CAS  Google Scholar 

  • Sun B, Wang H (2014) Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J Clim 27(6):2457–2474

    Article  Google Scholar 

  • Tang B, Emanuel K (2012) A ventilation index for tropical cyclones. Bul Am Meteorol Soc 93(12):1901–1912. https://doi.org/10.1175/BAMS-D-11-00165.1

    Article  Google Scholar 

  • Tang BH, Fang J, Bentley A, Kilroy G, Nakano M, Park MS, Rajasree VPM, Wang Z, Wing AA, Wu L (2020) Recent advances in research on tropical cyclogenesis. Trop Cyclones Res Rev 9(2):87–105. https://doi.org/10.1016/j.tcrr.2020.04.004

    Article  CAS  Google Scholar 

  • Trenberth KE (1998) Atmospheric moisture residence times and cycling: implications for rainfall rates with climate change. Clim Change 39:667–694

    Article  Google Scholar 

  • Trenberth KE, Fasullo J (2007) Water and energy budgets of hurricanes and implications for climate change. J Geophys Res Atmos 112:D23

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in Reanalyses. J Clim 24(18):4907–4924

    Article  Google Scholar 

  • Tsuboi A, Takemi T (2014) The interannual relationship between MJO activity and tropical cyclone genesis in the Indian Ocean. Geosci Lett 1:1–6

    Article  Google Scholar 

  • Vissa NK, Anandh PC, Gulakaram VS, Konda G (2021) Role and response of ocean–atmosphere interactions during Amphan (2020) super cyclone. Acta Geophys 69(5):1997–2010. https://doi.org/10.1007/s11600-021-00671-w

    Article  Google Scholar 

  • Wang Z (2012) Thermodynamic aspects of tropical cyclone formation. J Atmos Sci 69(8):2433–2451. https://doi.org/10.1175/JAS-D-11-0298.1

    Article  Google Scholar 

  • Wang Z, Hankes I (2016) Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSM/I–SSMIS retrievals. J Atmos Sci 73(7):2773–2781

    Article  Google Scholar 

  • Wang S, Toumi R (2019) Impact of dry midlevel air on the tropical cyclone outer circulation. J Atmos Sci 76(6):1809–1826. https://doi.org/10.1175/JAS-D-18-0302.1

    Article  Google Scholar 

  • Wang YP, Cui XP, Li XF, Zhang WL, Huang YJ (2016) Kinetic energy budget during the genesis period oftropical cyclone Durian (2001) in the South China Sea. Mon Weather Rev 144(8):2831–2854. https://doi.org/10.1175/MWR-D-15-0042.1

    Article  Google Scholar 

  • Wu L, Su H, Fovell RG, Dunkerton T, Wang Z, Kahn BH (2015) Impact of environmental moisture on tropical cyclone intensification. Atmos Chem Phys 15(24):14041–14053

    Article  CAS  Google Scholar 

  • Yan Z, Ge X, Guo B (2017) Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre. Dyn Atmos Oceans 80:173–182. https://doi.org/10.1016/j.dynatmoce.2017.10.008

    Article  Google Scholar 

  • Yanase W, Taniguchi H, Satoh M (2010) The genesis of tropical cyclone Nargis (2008): environmental modulation and numerical predictability. J Meteor Soc Japan 88(3):497–519

    Article  Google Scholar 

  • Yanase W, Satoh M, Taniguchi H, Fujinami H (2012) Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon. J Clim 25(8):2914–2930

    Article  Google Scholar 

  • Ying Y, Zhang Q (2012) A modeling study on tropical cyclone structural changes in response to ambient moisture variations. J Meteorol Soc Jpn 90(5):755–770

    Article  Google Scholar 

  • Yoshida R, Miyamoto Y, Tomita H, Kajikawa Y (2017) The effect of water vapor on tropical cyclone genesis: a numerical experiment of a non-developing disturbance observed in PALAU2010. J Meteorol Soc Jpn 95(1):35–47

    Article  Google Scholar 

  • Zhao N, Manda A, Guo X, Kikuchi K, Nasuno T, Nakano M et al (2021) A lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: importance of the moistening over the subtropical regions. Geophys Res Lett 48:5. https://doi.org/10.1029/2020GL091441

    Article  Google Scholar 

  • Zhou L, Murtugudde R (2014) Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J Clim 27(1):126–139

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge RMSC, IMD for providing the best-track data of tropical cyclones. The authors are also thankful to the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA5) and National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) for making available of the datasets. The first author would like to acknowledge the National Institute of Technology, Rourkela, for the financial support to carry out this research work. Authors wish to thank the anonymous reviewers for the critical technical comments and constructive suggestions which helped to improve the content of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M.K.G - Conceptualization, Methodology, Data curation, Simulations, Investigation, Formal analysis, Writing-Original draft preparation; N.K.V & Y.V - Conceptualization, Methodology, Writing-Reviewing & Editing, Supervision. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Naresh Krishna Vissa.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorja, M.M.K., Vissa, N.K. & Viswanadhapalli, Y. Moisture sources for the genesis of tropical cyclones over the Bay of Bengal using the lagrangian FLEXPART model. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07269-0

Keywords

Navigation