Skip to main content

Advertisement

Log in

Air-stagnation episodes based on regional climate models part I: evaluation over Europe

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Estimating the impact of climate change and emission scenarios on air pollution can be done using regional climate models (RCMs). Climate uncertainties are commonly estimated using RCM ensembles such as provided by EURO-CORDEX. Despite the strong relations between the weather and air pollutants, interactions are usually complex and require meteorological parameters that are not commonly available for the RCM ensembles. Pollution peaks, however, often coincide with stagnant atmospheric conditions that can be captured with widely-available RCM data. We first show that a commonly-used atmospheric stability index that uses rainfall, near-surface and 500 hPa wind speed, relates well to average and extreme air pollutant concentrations over Europe using Copernicus Atmosphere Monitoring Service (CAMS) data. We then provide an in-depth validation of 25 RCMs to reproduce the spatio-temporal features of air stagnation by comparison with ERA5. Overall the models were found to reproduce stagnant episodes fairly well, especially after bias correction. The systematic underestimation of stagnation frequency and duration is traced back to overestimated near-surface wind speed for a large group of models at high-elevation regions where the temporal correlations are also low. Regardless of the reference dataset, two model groups are identified that, independent on their resolution, give strongly different results in terms of orographic dependence of surface wind speed. These strong discrepancies underscore the need for bias correction when using RCM data for analysis of stagnation episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All used CORDEX data has been obtained and is available from The Earth System Grid Federation. ERA5 data has been obtained and is available through the Copernicus Climate Change Service Climate Data Store (CDS) from the Copernicus Climate Change Service (2017). CAMS data has been obtained and is available through the Atmosphere Data Store.

References

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28(8):949–964

    Google Scholar 

  • Baklanov A, Schlunzen K, Suppan P, Baldasano J, Brunner D, Aksoyoglu S, Zhang Y (2014) Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos Chem Phys 14(1):317–398

    Google Scholar 

  • Balog I, Ruti PM, Tobin I, Armenio V, Vautard R (2016) A numerical approach for planning offshore wind farms from regional to local scales over the Mediterranean. Renew Energy 85:395–405

    Google Scholar 

  • Bandhauer M, Isotta F, Lakatos M, Lussana C, Båserud L, Izsák B, Szentes O, Tveito OE, Frei C (2022) Evaluation of daily precipitation analyses in E-OBS (v19. 0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int J Climatol 42(2):727–747

    Google Scholar 

  • Barmpadimos I, Keller J, Oderbolz D, Hueglin C, Prévôt ASH (2012) One decade of parallel fine (PM 2.5) and coarse (PM 10-PM 2.5) particulate matter measurements in Europe: trends and variability. Atmos Chem Phys 12(7):3189–3203

    Google Scholar 

  • Caserini S, Giani P, Cacciamani C, Ozgen S, Lonati G (2017) Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: historical trend and future projections. Atmos Res 184:15–23

    Google Scholar 

  • Cholakian A, Colette A, Coll I, Ciarelli G, Beekmann M (2019) Future climatic drivers and their effect on PM10 components in Europe and the Mediterranean Sea. Atmos Chem Phys 19:4459–4484

    Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(1):7–30

    Google Scholar 

  • Christensen OB, Gutowski WJ, Nikulin G, Legutke S (2014) CORDEX Archive design. Danish Meteorological Institute

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2007) The HIRHAM regional climate model. Version 5 (beta)

  • Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in Limited Area Model climate simulations: Influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62:591–604. https://doi.org/10.1111/j.1600-0870.2010.00467.x

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597

    Google Scholar 

  • Di Luca A, de Elía R, Laprise R (2013) Potential for small scale added value of RCM’s downscaled climate change signal. Clim Dyn 40(3–4):601–618

    Google Scholar 

  • Doblas-Reyes FJ, Sörensson AA, Almazroui M, Dosio A, Gutowski WJ, Haarsma R, Hamdi R, Hewitson B, Kwon W-T, Lamptey BL, Maraun D, Stephenson TS, Takayabu I, Terray L, Turner A, Zuo Z (2021) Linking global to regional climate change. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1363-1512

  • EEA (2020) Air quality in europe-2020 report

  • Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92(9):1181–1192

    Google Scholar 

  • Fernández J, Frías MD, Cabos WD, Cofiño AS, Domínguez M, Fita L et al (2019) Consistency of climate change projections from multiple global and regional model intercomparison projects. Clim Dyn 52(1):1139–1156

    Google Scholar 

  • Fiore AM, Naik V, Leibensperger EM (2015) Air quality and climate connections. J Air Waste Manag Assoc 65(6):645–685

    Google Scholar 

  • Garrido-Perez JM, Ordóñez C, García-Herrera R, Barriopedro D (2018) Air stagnation in Europe: spatiotemporal variability and impact on air quality. Sci Total Environ 645:1238–1252

    Google Scholar 

  • Garrido-Perez JM, Ordóñez C, García-Herrera R, Schnell JL (2019) The differing impact of air stagnation on summer ozone across Europe. Atmos Environ 219:117062

    Google Scholar 

  • Garrido-Perez JM, García-Herrera R, Ordóñez C (2021) Assessing the value of air stagnation indices to reproduce PM10 variability in Europe. Atmos Res 248:105258

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Google Scholar 

  • Giot O, Termonia P, Degrauwe D, De Troch R, Caluwaerts S, Smet G et al (2016) Validation of the ALARO-0 model within the EURO-CORDEX framework. Geosci Model Dev 9(3):1143–1152

    Google Scholar 

  • Guerreiro CB, Foltescu V, De Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384

    Google Scholar 

  • Hassler B, Lauer A (2021) Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere 12(11):1462

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Thépaut JN (2020) The ERA5 global reanalysis. Quart J R Meteorol Soc 146(730):1999–2049

    Google Scholar 

  • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB et al (2011) Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223–253

    Google Scholar 

  • Horton DE, Diffenbaugh NS (2012) Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ Res Lett 7(4):044034

    Google Scholar 

  • Horton DE, Skinner CB, Singh D, Diffenbaugh NS (2014) Occurrence and persistence of future atmospheric stagnation events. Nat Clim Change 4(8):698–703

    Google Scholar 

  • Hyslop NP (2009) Impaired visibility: the air pollution people see. Atmos Environ 43(1):182–195

    Google Scholar 

  • Iles CE, Vautard R, Strachan J, Joussaume S, Eggen BR, Hewitt CD (2020) The benefits of increasing resolution in global and regional climate simulations for European climate extremes. Geosci Model Dev 13(11):5583–5607

    Google Scholar 

  • Inness A, Ades M, Agusti-Panareda A, Barré J, Benedictow A, Blechschmidt AM, Suttie M (2019) The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 19(6):3515–3556

    Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63

    Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199

    Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Region Environ Change 14(2):563–578

    Google Scholar 

  • Jacob D, Teichmann C, Sobolowski S, Katragkou E, Anders I, Belda M, Wulfmeyer V (2020) Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Region Environ Change 20(2):1–20

    Google Scholar 

  • Jourdier B (2020) Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France. Adv Sci Res 17:63–77

    Google Scholar 

  • Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8(3):603–618

    Google Scholar 

  • Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806

    Google Scholar 

  • Kerr GH, Waugh DW (2018) Connections between summer air pollution and stagnation. Environ Res Lett 13(8):084001

    Google Scholar 

  • Kleinman LI (2005) The dependence of tropospheric ozone production rate on ozone precursors. Atmos Environ 39(3):575–586

    Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333

    Google Scholar 

  • Kjellström E, Bärring L, Nikulin G, Nilsson C, Persson G, Strandberg G (2016) Production and use of regional climate model projections–A Swedish perspective on building climate services. Clim Serv 2:15–29

    Google Scholar 

  • Lacressonnière G, Foret G, Beekmann M, Siour G, Engardt M, Gauss M, Vautard R (2016) Impacts of regional climate change on air quality projections and associated uncertainties. Clim Change 136(2):309–324

    Google Scholar 

  • Leutwyler D, Lüthi D, Ban N, Fuhrer O, Schär C (2017) Evaluation of the convection-resolving climate modeling approach on continental scales. J Geophys Res: Atmos 122(10):5237–5258

    Google Scholar 

  • Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Melkonyan A, Wagner P (2013) Ozone and its projection in regard to climate change. Atmos Environ 67:287–295

    Google Scholar 

  • Menut L, Tripathi OP, Colette A, Vautard R, Flaounas E, Bessagnet B (2013) Evaluation of regional climate simulations for air quality modelling purposes. Clim Dyn 40(9–10):2515–2533

    Google Scholar 

  • Minola L, Zhang F, Azorin-Molina C, Pirooz AS, Flay RGJ, Hersbach H, Chen D (2020) Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim Dyn 55:887–907

    Google Scholar 

  • Moemken J, Reyers M, Feldmann H, Pinto JG (2018) Future changes of wind speed and wind energy potentials in EURO-CORDEX ensemble simulations. J Geophys Res Atmos 123(12):6373–6389

    Google Scholar 

  • Mukherjee A, Agrawal M (2017) A global perspective of fine particulate matter pollution and its health effects. Rev Environ Contamin Toxicol 244:5–51

    Google Scholar 

  • Olauson J (2018) ERA5: the new champion of wind power modelling? Renew Energy 126:322–331

    Google Scholar 

  • Otero N, Rust HW, Butler T (2021) Temperature dependence of tropospheric ozone under NOx reductions over Germany. Atmos Environ 253:118334

    Google Scholar 

  • Pope CA III, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Thun MJ (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect 119(11):1616–1621

    Google Scholar 

  • Porter WC, Heald CL, Cooley D, Russell B (2015) Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmos Chem Phys 15(18):10349–10366

    Google Scholar 

  • Ramon J, Lledó L, Torralba V, Soret A, Doblas-Reyes FJ (2019) What global reanalysis best represents near-surface winds? Quart J R Meteorol Soc 145(724):3236–3251

    Google Scholar 

  • Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498

    Google Scholar 

  • Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdiscip Rev Clim Change 7(1):145–159

    Google Scholar 

  • Samuelsson P, Gollvik S, Kupiainen M, Kourzeneva E, van de Berg WJ (2015) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). SMHI

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B et al (2021) COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geosci Model Dev 14(8):5125–5154

    Google Scholar 

  • Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E et al (2015) CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. SMHI

  • Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, Collins WD, Fuzzi S, Gallardo L, Kiendler-Scharr A, Klimont Z, Liao H, Unger N, Zanis P (2021) Short-lived climate forcers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 817-922

  • Tai AP, Martin MV, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Change 4(9):817–821

    Google Scholar 

  • Tapiador FJ, Navarro A, Moreno R, Sánchez JL, García-Ortega E (2020) Regional climate models: 30 years of dynamical downscaling. Atmos Res 235:104785

    Google Scholar 

  • Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P et al (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: A study over different CORDEX regions using REMO. Atmosphere 4(2):214–236. https://doi.org/10.3390/atmos4020214

    Article  Google Scholar 

  • Termonia P, Quinet A (2004) A new transport index for predicting episodes of extreme air pollution. J Appl Meteorol Climatol 43(4):631–640

    Google Scholar 

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J Geophys Res Atmos 120(9):3957–3972

    Google Scholar 

  • Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, Edwards J et al (2019) The Met Office Unified Model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci Model Dev 12(5):1909–1963

    Google Scholar 

  • van Meijgaard E, Van Ulft LH, Van de Berg WJ, Bosveld FC, Van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO, version 2.1 (p. 43). De Bilt, KNMI, The Netherlands

  • Van Meijgaard E, Van Ulft LH, Lenderink G, De Roode SR, Wipfler EL, Boers R, van Timmermans RMA (2012) Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe (No. KVR 054/12). KVR

  • Van Vooren S, Van Schaeybroeck B, Nyssen J, Van Ginderachter M, Termonia P (2019) Evaluation of CORDEX rainfall in northwest Ethiopia: sensitivity to the model representation of the orography. Int J Climatol 39(5):2569–2586

    Google Scholar 

  • Vautard R, Moran MD, Solazzo E, Gilliam RC, Matthias V, Bianconi R, Galmarini S (2012) Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmos Environ 53:15–37

    Google Scholar 

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41(9):2555–2575

    Google Scholar 

  • Vautard R, Colette A, Van Meijgaard E, Meleux F, Van Oldenborgh GJ, Otto F, Yiou P (2018) Attribution of wintertime anticyclonic stagnation contributing to air pollution in Western Europe. Bull Am Meteorol Soc 99(1):S70–S75

    Google Scholar 

  • Wang JX, Angell JK (1999) Air stagnation climatology for the United States. NOAA/Air Resour Lab ATLAS 1

  • World Health Organization (2021) Review of evidence on health aspects of air pollution: REVIHAAP project: technical report (No. WHO/EURO: 2013-2663-42419-58845). World Health Organization. Regional Office for Europe

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Regional Climate, and the Working Group on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. We also thank the climate modelling groups (listed in Table 1) for producing and making available their model output. We also acknowledge the Earth System Grid Federation infrastructure, an international effort led by the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP). We acknowledge discussions with Alex Deckmyn on the topic of regridding.

Funding

This work has been supported by the projects URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, with co-funding from the European Union (Grant 690462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Van Schaeybroeck.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 43364 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nieuwenhuyse, J., Van Schaeybroeck, B., Caluwaerts, S. et al. Air-stagnation episodes based on regional climate models part I: evaluation over Europe. Clim Dyn 61, 2121–2138 (2023). https://doi.org/10.1007/s00382-023-06665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06665-2

Keywords

Navigation