Skip to main content

Advertisement

Log in

Sea surface temperature variations partitioned through multiple seasonal cycles

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Low-frequency changes in the tropical Indian Ocean surface temperature have previously been investigated in the context of the Indian Ocean basin-wide (IOBM) and dipole (IOD) modes. The IOBM and IOD are the leading eigenmodes estimated from a traditional anomaly of SST. This approach ignores the possibility of multiple seasonal cycles (SCs) having different geographic patterns and interannually modulating amplitudes. The analyses presented here are anchored on the four sets of multivariate seasonal cycles independently extracted from the monthly observations of sea surface temperature (SST), surface wind, and surface pressure variations. We show that the secular warming, encapsulated by the monotonic variations of the first SC of SST (SST–SC1), differs from the previous linear trend patterns and has the most significant variance in the Indian Ocean Warm Pool (IOWP). Hence, these warming tendencies quantify the monotonic expansion rates of IOWP. The most significant interannual responses of Indian Ocean SST to remote forces (such as El Niño and La Niña) are also captured by SST–SC1. Unlike the traditional IOBM but similar to SST–SC1’s secular warming, these remotely forced interannual signals also have considerable variances in IOWP. The interannual variations in SST’s third seasonal cycle (i.e., SST–SC3) inherit SST–SC3’s dipole pattern but diverge from classical IOD in many aspects and are predominantly controlled by local processes. However, they are insufficient to account for the total interannual signals on their own. The collective interannual variations of four seasonal cycles—with significant variances off Africa’s eastern shores—demonstrate basin-wide unipolar patterns. Hence, SST interannual signals in the north-western Indian Ocean and the constantly growing warming in the IOWP influence climate and weather over countries surrounding the Indian Ocean. Thus, this study offers a simple way to separate three types of climate signals: secular, internal, and remotely induced climate fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data used in this study can be downloaded from https://psl.noaa.gov/data/gridded/data.noaa.ersst.v4.html and https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html.

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: The influence of enso teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231

    Article  Google Scholar 

  • Allan R, Chambers D, Drosdowsky W, Hendon H, Latif M, Nicholls N, Smith I, Stone R, Tourre Y (2001) Is there an indian ocean dipole and is it independent of the el niño-southern oscillation. CLIVAR Exchanges 21:18–22

    Google Scholar 

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the indian ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34(2)

  • Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the indian ocean: spring initiation of the zonal mode. Deep Sea Res Part 2: Topical Stud Oceanogr. 50(12–13):2305–2330

    Article  Google Scholar 

  • Annamalai H, Liu P, Xie SP (2005) Southwest Indian ocean sst variability: its local effect and remote influence on Asian monsoons. J Clim. 18(20):4150–4167

    Article  Google Scholar 

  • Annamalai H, Xie S, McCreary J, Murtugudde R (2005) Impact of indian ocean sea surface temperature on developing el niño. J Clim 18(2):302–319

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) Influence of the indian ocean dipole on the australian winter rainfall. Geophys Res Lett 30(15)

  • Ashok K, Guan Z, Saji N, Yamagata T (2004) Individual and combined influences of enso and the Indian ocean dipole on the Indian summer monsoon. J Clim 17(16):3141–3155

    Article  Google Scholar 

  • Back LE, Bretherton CS (2009) On the relationship between sst gradients, boundary layer winds, and convergence over the tropical oceans. J Clim 22(15):4182–4196

    Article  Google Scholar 

  • Baquero-Bernal A, Latif M, Legutke S (2002) On dipolelike variability of sea surface temperature in the tropical Indian ocean. J Clim 15(11):1358–1368

    Article  Google Scholar 

  • Barber RT, Chavez FP (1983) Biological consequences of el nino. Science 222(4629):1203–1210

    Article  Google Scholar 

  • Barnett T, Zwiers F, Hengerl G, Allen M, Crowly T, Gillett N, Hasselmann K, Jones P, Santer B, Schnur R et al (2005) Detecting and attributing external influences on the climate system: a review of recent advances. J Clim 18(9):1291–1314

    Article  Google Scholar 

  • Battisti DS, Vimont DJ, Kirtman BP (2019) 100 years of progress in understanding the dynamics of coupled atmosphere-ocean variability. Meteorological Monographs 59:8–1

    Article  Google Scholar 

  • Behera S, Krishnan R, Yamagata T (1999) Unusual ocean-atmosphere conditions in the tropical Indian ocean during 1994. Geophys Res Lett 26(19):3001–3004

    Article  Google Scholar 

  • Behera SK, Rao SA, Saji HN, Yamagata T (2003) Comments on “a cautionary note on the interpretation of eofs’’. J Clim 16(7):1087–1093

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian ocean dipole on the east African short rains: a cgcm study. J Clim 18(21):4514–4530

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A cgcm study on the interaction between iod and enso. J Clim 19(9):1688–1705

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97(3):163–172

    Article  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci 104(50):19709–19714

    Article  Google Scholar 

  • Cai W, Van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of enso and the iod and the mechanisms for impacts on Australian rainfall. J Clim 24(15):3910–3923

    Article  Google Scholar 

  • Cai W, Wu L, Lengaigne M, Li T, McGregor S, Kug JS, Yu JY, Stuecker MF, Santoso A, Li X, et al. (2019) Pantropical climate interactions. Science 363(6430)

  • Chambers D, Tapley B, Stewart R (1999) Anomalous warming in the Indian ocean coincident with el niño. J Geophys Res 104(C2):3035–3047

    Article  Google Scholar 

  • Chen G, Li H (2008) Fine pattern of natural modes in sea surface temperature variability: 1985–2003. J Phys Oceanography 38(2):314–336

    Article  Google Scholar 

  • Chowdary J, Gnanaseelan C (2007) Basin-wide warming of the indian ocean during el niño and indian ocean dipole years. Int J Clim 27(11):1421–1438

    Article  Google Scholar 

  • Clark CO, Cole JE, Webster PJ (2000) Indian ocean sst and indian summer rainfall: predictive relationships and their decadal variability. J Clim 13(14):2503–2519

    Article  Google Scholar 

  • Clark CO, Webster PJ, Cole JE (2003) Interdecadal variability of the relationship between the Indian ocean zonal mode and east African coastal rainfall anomalies. J Clim 16(3):548–554

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9(9):2190–2196

    Article  Google Scholar 

  • Clement AC, Seager R, Murtugudde R (2005) Why are there tropical warm pools? J Clim 18(24):5294–5311

    Article  Google Scholar 

  • Compagnucci RH, Richman MB (2008) Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int J Clim 28(6):703–726

    Article  Google Scholar 

  • Compo GP, Sardeshmukh PD (2010) Removing enso-related variations from the climate record. J Clim 23(8):1957–1978

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37(10)

  • Dhame S, Taschetto AS, Santoso A, Meissner KJ (2020) Indian ocean warming modulates global atmospheric circulation trends. Clim Dyn 55(7):2053–2073

    Article  Google Scholar 

  • Dommenget D, Latif M (2002) A cautionary note on the interpretation of eofs. J Clim 15(2):216–225

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical indian and atlantic oceans on enso. Geophys Res Lett 33(11)

  • Dong L, McPhaden MJ (2016) Interhemispheric sst gradient trends in the indian ocean prior to and during the recent global warming hiatus. J Clim 29(24):9077–9095

    Article  Google Scholar 

  • Dong L, McPhaden MJ (2018) Unusually warm indian ocean sea surface temperatures help to arrest development of el niño in 2014. Sci Rep 8(1):1–10

    Google Scholar 

  • Du Y, Xie SP (2008) Role of atmospheric adjustments in the tropical indian ocean warming during the 20th century in climate models. Geophys Res Lett 35(8)

  • Du Y, Cai W, Wu Y (2013) A new type of the Indian ocean dipole since the mid-1970s. J Clim 26(3):959–972

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Endo S, Tozuka T (2016) Two flavors of the Indian ocean dipole. Clim Dyn 46(11):3371–3385

    Article  Google Scholar 

  • Feng M, Meyers G (2003) Interannual variability in the tropical Indian ocean: a two-year time-scale of Indian ocean dipole. Deep Sea Res Part 2 50(12–13):2263–2284

    Article  Google Scholar 

  • Fischer AS, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian ocean dipole/zonal mode in a coupled gcm. J Clim 18(17):3428–3449

    Article  Google Scholar 

  • Ghil M, Allen M, Dettinger M, Ide K, Kondrashov D, Mann M, Robertson AW, Saunders A, Tian Y, Varadi F et al (2002) Advanced spectral methods for climatic time series. Reviews of geophysics 40(1):3–1

  • Gu D, Philander S, McPhaden MJ (1997) The seasonal cycle and its modulation in the eastern tropical pacific ocean. J Phys Oceanography 27(10):2209–2218

    Article  Google Scholar 

  • Guan B, Nigam S (2008) Pacific sea surface temperatures in the twentieth century: an evolution-centric analysis of variability and trend. J Clim 21(12):2790–2809

    Article  Google Scholar 

  • Guo F, Liu Q, Sun S, Yang J (2015) Three types of Indian ocean dipoles. J Clim 28(8):3073–3092

    Article  Google Scholar 

  • Guo F, Liu Q, Yang J, Fan L (2018) Three types of Indian ocean basin modes. Clim Dyn 51(11):4357–4370

    Article  Google Scholar 

  • Hackert E, Busalacchi A, Carton J, Murtugudde R, Arkin P, Evans M (2017) The role of the Indian ocean sector for prediction of the coupled indo-pacific system: impact of atmospheric coupling. J Geophys Res 122(4):2813–2829

    Article  Google Scholar 

  • Hastenrath S, Nicklis A, Greischar L (1993) Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian ocean. J Geophys Res 98(C11):20219–20235

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resources Res 18(1):107–121

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang HM (2017) Extended reconstructed sea surface temperature, version 5 (ersstv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the Indian ocean sst and Indian ocean dipole from 1880 to 2004. J Clim 21(10):2035–2046

    Article  Google Scholar 

  • Iizuka S, Matsuura T, Yamagata T (2000) The Indian ocean sst dipole simulated in a coupled general circulation model. Geophys Res Lett 27(20):3369–3372

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian ocean dipole on the following year’s el niño. Nat Geosci 3(3):168–172

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere-ocean interactions in a conceptual framework. J Clim 22(3):550–567

    Article  Google Scholar 

  • Joseph P, Pillai P (1984) Air-sea interaction on a seasonal scale over north Indian ocean-part 1: inter-annual variations of sea surface temperature and Indian summer monsoon rainfall. Mausam 35(3):323–330

    Article  Google Scholar 

  • Kallummal R (2022) Projected engulfment of tropical indian ocean by anthropogenical warmpool. Clim Dyn pp 1 – 13

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The ncep/ncar 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  • Kennedy JJ (2014) A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev Geophys 52(1):1–32

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during enso: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  • Krishnamurthy V, Kirtman BP (2003) Variability of the Indian ocean: relation to monsoon and enso. Q J R Meteorol Soc 129(590):1623–1646

    Article  Google Scholar 

  • Krishnan R, Sabin T, Ayantika D, Kitoh A, Sugi M, Murakami H, Turner A, Slingo J, Rajendran K (2013) Will the south Asian monsoon overturning circulation stabilize any further? Clim Dyn 40(1–2):187–211

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between enso and the Indian ocean. J Clim 19(9):1784–1801

    Article  Google Scholar 

  • Latif M, Barnett TP (1995) Interactions of the tropical oceans. J Clim 8(4):952–964

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the “atmospheric bridge’’ in linking tropical pacific enso events to extratropical sst anomalies. J Clim 9(9):2036–2057

    Article  Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere-ocean variations in the indo-pacific sector during enso episodes. J Clim 16(1):3–20

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287(5461):2225–2229

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36(7)

  • Li S, Lu J, Huang G, Hu K (2008) Tropical Indian ocean basin warming and East Asian summer monsoon: a multiple agcm study. J Clim 21(22):6080–6088

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmosph Sci 44(17):2418–2436

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J Clim 18(22):4684–4700

    Article  Google Scholar 

  • Long SM, Xie SP, Zheng XT, Liu Q (2014) Fast and slow responses to global warming: sea surface temperature and precipitation patterns. J Clim 27(1):285–299

    Article  Google Scholar 

  • Lutsko NJ, Marshall J, Green B (2019) Modulation of monsoon circulations by cross-equatorial ocean heat transport. J Clim 32(12):3471–3485

    Article  Google Scholar 

  • L’Heureux ML, Collins DC, Hu ZZ (2013) Linear trends in sea surface temperature of the tropical pacific ocean and implications for the el niño-southern oscillation. Clim Dyn 40(5–6):1223–1236

    Article  Google Scholar 

  • Meehl GA (1997) The south Asian monsoon and the tropospheric biennial oscillation. J Clim 10(8):1921–1943

    Article  Google Scholar 

  • Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of el niño, la niña, and interactions with the tropical indian ocean. J Clim 20(13):2872–2880

    Article  Google Scholar 

  • Monahan AH, Fyfe JC, Ambaum MH, Stephenson DB, North GR (2009) Empirical orthogonal functions: the medium is the message. J Clim 22(24):6501–6514

    Article  Google Scholar 

  • Mooley D, Parthasarathy B (1984) Fluctuations in all-India summer monsoon rainfall during 1871–1978. Clim Change 6(3):287–301

    Article  Google Scholar 

  • Murtugudde R, Annamalai H (2004) Role of the Indian ocean in regional climate variability. Geophys monogr 147(409):213–246

    Google Scholar 

  • Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian ocean with relevance to 1997–1998. J Geophys Res 105(C2):3295–3306

    Article  Google Scholar 

  • Ogallo L (1989) The spatial and temporal patterns of the east African seasonal rainfall derived from principal component analysis. Int J Climatol 9(2):145–167

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of el niño and la niña. J Clim 23(21):5826–5843

    Article  Google Scholar 

  • Penland C, Matrosova L (2006) Studies of el niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Clim 19(22):5796–5815

    Article  Google Scholar 

  • Pezzulli S, Stephenson D, Hannachi A (2005) The variability of seasonality. J Clim 18(1):71–88

    Article  Google Scholar 

  • Phojanamongkolkij N, Kato S, Wielicki BA, Taylor PC, Mlynczak MG (2014) A comparison of climate signal trend detection uncertainty analysis methods. J Clim 27(9):3363–3376

    Article  Google Scholar 

  • Qian C, Wu Z, Fu C, Wang D (2011) On changing el niño: A view from time-varying annual cycle, interannual variability, and mean state. J Clim 24(24):6486–6500

    Article  Google Scholar 

  • Rao KG, Goswami BN (1988) Interannual variations of sea surface temperature over the arabian sea and the indian monsoon: a new perspective. Mon Weather Rev 116(3):558–568

    Article  Google Scholar 

  • Rao SA, Behera SK (2005) Subsurface influence on sst in the tropical indian ocean: Structure and interannual variability. Dyn Atmospheres Oceans 39(1–2):103–135

    Article  Google Scholar 

  • Reason C, Allan R, Lindesay J, Ansell T (2000) Enso and climatic signals across the Indian ocean basin in the global context: Part I, interannual composite patterns. Int J Clim 20(11):1285–1327

    Article  Google Scholar 

  • Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian ocean warming. J Clim 27(22):8501–8509

    Article  Google Scholar 

  • Sabeerali C, Ajayamohan R (2018) On the shortening of Indian summer monsoon season in a warming scenario. Clim Dyn 50(5):1609–1624

    Article  Google Scholar 

  • Saji N, Yamagata T (2003) Possible impacts of Indian ocean dipole mode events on global climate. Clim Res 25(2):151–169

    Article  Google Scholar 

  • Saji N, Goswami BN, Vinayachandran P, Yamagata T (1999) A dipole mode in the tropical Indian ocean. Nature 401(6751):360–363

    Article  Google Scholar 

  • Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical sst. J Clim 10(3):521–534

    Article  Google Scholar 

  • Solomon A, Newman M (2012) Reconciling disparate twentieth-century indo-pacific ocean temperature trends in the instrumental record. Nat Clim Change 2(9):691–699

    Article  Google Scholar 

  • Stine AR, Huybers P, Fung IY (2009) Changes in the phase of the annual cycle of surface temperature. Nature 457(7228):435–440

    Article  Google Scholar 

  • Sun S, Lan J, Fang Y, Gao X (2015) A triggering mechanism for the Indian ocean dipoles independent of enso. J Clim 28(13):5063–5076

    Article  Google Scholar 

  • Swapna P, Krishnan R, Wallace J (2014) Indian ocean and monsoon coupled interactions in a warming environment. Clim Dyn 42(9–10):2439–2454

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096

    Article  Google Scholar 

  • Tiao GC, Reinsel GC, Xu D, Pedrick J, Zhu X, Miller A, DeLuisi J, Mateer C, Wuebbles D (1990) Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J Geophys Res 95(D12):20507–20517

    Article  Google Scholar 

  • Timmermann A, An SI, Kug JS, Jin FF, Cai W, Capotondi A, Cobb KM, Lengaigne M, McPhaden MJ, Stuecker MF et al (2018) El niño-southern oscillation complexity. Nature 559(7715):535–545

    Article  Google Scholar 

  • Tokinaga H, Xie SP, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the walker circulation driven by tropical indo-pacific warming. Nature 491(7424):439–443

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW, Stepaniak DP (2006) The asian monsoon: global perspectives. In: The Asian Monsoon, Springer, pp 67–87

  • Ummenhofer CC, Sen Gupta A, England MH, Reason CJ (2009) Contributions of Indian ocean sea surface temperatures to enhanced east African rainfall. J Clim 22(4):993–1013

    Article  Google Scholar 

  • Verdon-Kidd DC (2018) On the classification of different flavours of Indian ocean dipole events. Int J Climatol 38(13):4924–4937

    Article  Google Scholar 

  • Wang B, Ding Q, Liu J (2011) Concept of global monsoon. In: The global monsoon system: research and forecast, World Scientific, pp 3–14

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern hemisphere summer monsoon intensified by mega-el niño/southern oscillation and atlantic multidecadal oscillation. Proc Natl Acad Sci 110(14):5347–5352

    Article  Google Scholar 

  • Wang B, Biasutti M, Byrne MP, Castro C, Chang CP, Cook K, Fu R, Grimm AM, Ha KJ, Hendon H et al (2021) Monsoons climate change assessment. Bull Am Meteorol Soc 102(1):E1–E19

    Article  Google Scholar 

  • Wang H, Murtugudde R, Kumar A (2016) Evolution of Indian ocean dipole and its forcing mechanisms in the absence of enso. Clim Dyn 47(7):2481–2500

    Article  Google Scholar 

  • Wang PX, Wang B, Cheng H, Fasullo J, Guo Z, Kiefer T, Liu Z (2017) The global monsoon across time scales: mechanisms and outstanding issues. Earth-Sci Rev 174:84–121

    Article  Google Scholar 

  • Weare BC (1979) A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J Atmospheric Sci 36(12):2279–2291

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian ocean during 1997–98. Nature 401(6751):356–360

    Article  Google Scholar 

  • Weller E, Min SK, Cai W, Zwiers FW, Kim YH, Lee D (2016) Human-caused indo-pacific warm pool expansion. Sci Adv 2(7):e1501719

    Article  Google Scholar 

  • Wu R, Kirtman BP (2004) Understanding the impacts of the Indian ocean on enso variability in a coupled gcm. J Clim 17(20):4019–4031

    Article  Google Scholar 

  • Wu Z, Schneider EK, Kirtman BP, Sarachik ES, Huang NE, Tucker CJ (2008) The modulated annual cycle: an alternative reference frame for climate anomalies. Clim Dyn 31(7):823–841

    Article  Google Scholar 

  • Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian ocean climate variability. J Clim 15(8):864–878

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian ocean capacitor effect on indo-western pacific climate during the summer following el niño. J Clim 22(3):730–747

    Article  Google Scholar 

  • Yamagata T, Behera SK, Rao SA, Guan Z, Ashok K, Saji HN (2003) Comments on “dipoles, temperature gradients, and tropical climate anomalies’’. Bull Am Meteorol Soc 84(10):1418–1422

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR, Rao SA (2004) Coupled ocean-atmosphere variability in the tropical indian ocean. Earth’s Clim 147:189–212

    Google Scholar 

  • Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the indian ocean sst basin mode on the asian summer monsoon. Geophysical Research Letters 34(2)

  • Yu L, Rienecker MM (1999) Mechanisms for the Indian ocean warming during the 1997–98 el nino. Geophys Res Lett 26(6):735–738

    Article  Google Scholar 

  • Yuan Y, Yang H, Zhou W, Li C (2008) Influences of the Indian ocean dipole on the Asian summer monsoon in the following year. Int J Clim 28(14):1849–1859

    Article  Google Scholar 

  • Zhan R, Wang Y, Tao L (2014) Intensified impact of east Indian ocean sst anomaly on tropical cyclone genesis frequency over the western north pacific. J Clim 27(23):8724–8739

    Article  Google Scholar 

  • Zhang L, Han W, Karnauskas KB, Meehl GA, Hu A, Rosenbloom N, Shinoda T (2019) Indian ocean warming trend reduces pacific warming response to anthropogenic greenhouse gases: an interbasin thermostat mechanism. Geophys Res Lett 46(19):10882–10890

    Article  Google Scholar 

  • Zhao Y, Nigam S (2015) The Indian ocean dipole: a monopole in sst. J Clim 28(1):3–19

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks the anonymous reviewer. The computational facilities at CSIR-4PI and the data visualization software GrADS (http://cola.gmu.edu/grads/) are also acknowledged.

Funding

This study and author have received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshan Kallummal.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallummal, R. Sea surface temperature variations partitioned through multiple seasonal cycles. Clim Dyn 60, 623–641 (2023). https://doi.org/10.1007/s00382-022-06347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06347-5

Keywords

Navigation