Skip to main content

Advertisement

Log in

Impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula: the explicit role of NAO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigated the impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula by using NCEP reanalysis data and a historical Coupled Model Intercomparison Project phase-6 (CMIP6) simulation performed with the MPI-ESM1-2-HR coupled global climate model. Special emphasis is given to the North Atlantic Oscillation (NAO), an important mode of winter climate variability in the northern hemisphere. We first decomposed the winter temperature into dominant modes by applying an Empirical Orthogonal Function (EOF) analysis. The leading first and second EOF modes explaining 28.6% and 21.0% of the total variance of the winter temperature, reveal positive anomalies in the northern and negative anomalies in the southern Arabian Peninsula. The principal components associated with leading EOF modes reveal significant correlations with upper level circulation in the mid-latitude and display a Circumglobal wave-like pattern (CGT) extending from the North Atlantic to the East Asia region. We further defined winter temperature indices for the northern (hereafter WTNAP) and southern (hereafter WTSAP) Arabian Peninsula. The correlation maps between WTNAP and upper-level circulation exhibits a wave-like pattern in mid-latitudes similar to the CGT. At lower levels, the WTNAP reveals significant correlations with sea surface temperature and mean sea level pressure over the North Atlantic Ocean, depicting an NAO-like pattern. We further carried out an inverse analysis using the winter NAO index. The NAO impacts the winter temperature over the Arabian Peninsula via mid-latitude circulation. At lower levels, the positive (negative) NAO phases are associated with anomalous anticyclonic (cyclonic) circulation over Mediterranean. The anomalous circulation associated with NAO favors cold (warm) temperature advection to the Arabian Peninsula and hence modulates the winter temperature. The ERA5 reanalysis and a historical CMIP6 model simulation performed with the global climate model MPI-ESM1-2-HR also underlines the proposed findings and mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Almazroui M (2012) Temperature variability over Saudi Arabia during the period 1978–2010 and its association with global climate indices. J King Abdulaziz Univ Met Env Arid Land Agric Sci. https://doi.org/10.4197/Met.23-1.6

    Article  Google Scholar 

  • Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed F, Alkhalaf AK, Dambul R (2017a) Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Models over the Arabian Peninsula. Atmos Res 194:202–213

    Article  Google Scholar 

  • Almazroui M, Saeed S, Islam MN, Khalid MS, Alkhalaf AK, Dambul R (2017b) Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula: a comparison between different categories of CMIP3 models. Earth Syst Environ. https://doi.org/10.1007/s41748-017-0027-5

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S, Khalid MS, Alkhalaf AK, Dambul R (2017c) Assessment of uncertainties in projected temperature and precipitation using three categories of CMIP5 multimodel ensembles. Earth Syst Environ. https://doi.org/10.1007/s41748-017-0027-5

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S, Saeed F, Ismail M (2020) Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00183-5

    Article  Google Scholar 

  • Atif RM, Almazroui M, Saeed S, Abid MA, Islam MN, Ismail M (2019) Extreme precipitation events over Saudi Arabia during the wet season and their associated teleconnections. Atmos Res. https://doi.org/10.1016/j.atmosres.2019.104655

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Castro-Diez Y, Pozon-Vasquez D, Rodrigo F, Esteban-Parra M (2002) NAO and winter temperature variability in southern Europe. Geophys Res Lett 29:1-1-1–4. https://doi.org/10.1029/2001GL014042

    Article  Google Scholar 

  • Clark JP, Feldstein SB (2020) What drives the North Atlantic oscillation’s temperature anomaly patterns? Part I: the growth and decay of the surface air temperature anomalies. J Atmos Sci 77:185–198. https://doi.org/10.1175/JAS-D-19-0027.1

    Article  Google Scholar 

  • Cohen JL et al (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling Environ. Res Lett 7:14007

    Article  Google Scholar 

  • Deser C, Hurrell JW (2017) Phillips, AS (2017) The role of the North Atlantic Oscillation in European climate projections. Clim Dyn 49:3141–3157. https://doi.org/10.1007/s00382-016-3502-z

    Article  Google Scholar 

  • Dimri AP, Niyogi D, Barros AP, Ridley J, Mohanty UC, Yasunari T, Sikka DR (2015) Western disturbances, a review. Rev Geophys 53(2):225–246. https://doi.org/10.1002/2014RG000460

    Article  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505. https://doi.org/10.1175/JCLI3473.1

    Article  Google Scholar 

  • Gutjahr O, Putrasahan D, Lohmann K, Jungclaus JH, von Storch JS, Brüggemann N, Haak H, Stössel A (2019) Max planck institute earth system model (MPI–ESM1.2) for the high resolution model intercomparison project (HighResMIP). Geosci Model Dev 12:3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

    Article  Google Scholar 

  • Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999

    Article  Google Scholar 

  • Herceg-Bulić I, Kucharski F (2014) North Atlantic SSTs as a link between the wintertime NAO and the following spring climate. J Clim. https://doi.org/10.1175/JCLI-D-12-00273.1

    Article  Google Scholar 

  • Hersbach H et al (2020) The ERA5 global reanalysis. QJRMS. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hurrell J (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668

    Article  Google Scholar 

  • Hurrell JW et al (2003) An overview of the North Atlantic Oscillation. In: Hurrel JW et al (ed) The North Atlantic oscillation, climatic significance and environmental impact. AGU Geophysical Monograph, Washington, DC, pp 1–35

    Chapter  Google Scholar 

  • Iles C, Hegerl G (2017) Role of North Atlantic Oscillation in decadal temperature trends. Environ Res Lett 12:114010. https://doi.org/10.1088/1748-9326/aa9152

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) In Climate Change 2013, The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256

    Article  Google Scholar 

  • Lin J, Qian TA (2019) New picture of the global impacts of El Nino-Southern oscillation. Sci Rep 9:17543. https://doi.org/10.1038/s41598-019-54090-5

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712. https://doi.org/10.1002/joc.1181

    Article  Google Scholar 

  • Mujumdar (2006) IITM Research Report RR-111 and the references therein, https://www.tropmet.res.in/~lip/Publication/RR-pdf/RR-111.pdf.

  • New M, Hulme M, Jones P (2000) Representing twentieth century space time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13(13):2217–2238

    Article  Google Scholar 

  • Saeed S, Almazroui M (2019) Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim Dyn. https://doi.org/10.1007/s00382-019-04862-6

    Article  Google Scholar 

  • Saeed S, Müller WA, Hagemann S, Jacob D (2011a) Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: the explicit role of the surface heat low. Clim Dyn 37:1045–1060. https://doi.org/10.1007/s00382-010-0888-x

    Article  Google Scholar 

  • Saeed S, Müller WA, Hagemann S, Jacob D, Mujumdar M, Krishnan R (2011b) Precipitation variability over the South Asian monsoon heat low and associated teleconnections. Geophys Res Lett 38:L08702. https://doi.org/10.1029/2011GL046984

    Article  Google Scholar 

  • Saeed S, Van Lipzig N, Müller WA et al (2014) Influence of the circumglobal wave-train on European summer precipitation. Clim Dyn 43:503–515. https://doi.org/10.1007/s00382-013-1871-0

    Article  Google Scholar 

  • Saffioti C, Fischer EM, Knutti R (2015) The contribution of atmospheric circulation and coverage bias to the warming hiatus. Geophys Res Lett 42:2385–2391

    Article  Google Scholar 

  • Saffioti C et al (2016) Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability. Geophys Res Lett 43:8189–8198

    Article  Google Scholar 

  • Seager R, Naik NH, Ting MF, Cane MA, Harnik N, Kushnir Y (2010) Adjustment of the Atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific-North America sector. Q J R Meteorol Soc 136:277–296. https://doi.org/10.1002/qj.588

    Article  Google Scholar 

  • Second National Communication Report (2011) Kingdom of Saudi Arabia, Pages 152. UNFCC, https://unfccc.int/documents/81605.

  • Sutton RT, Norton WA, Jewson SP (2000) The North Atlantic Oscillation—what role for the Ocean? Atmos Sci Lett 1:89–100

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300. https://doi.org/10.1029/98GL00950

    Article  Google Scholar 

  • Trigo R, Osborn T, Corte-Real J (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17

    Article  Google Scholar 

  • von Storch J-S, Putrasahan D, Lohmann K, Gutjahr O, Jungclaus J, Bittner M, Haak H, Wieners K-H, Giorgetta M, Reick C, Esch M, Gayler V, de Vrese P, Raddatz T, Mauritsen T, Behrens J, Brovkin V, Claussen M, Crueger T, Fast I, Fiedler S, Hagemann S, Hohenegger C, Jahns T, Kloster S, Kinne S, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Müller W, Nabel J, Notz D, Peters-von Gehlen K, Pincus R, Pohlmann H, Pongratz J, Rast S, Schmidt H, Schnur R, Schulzweida U, Six K, Stevens B, Voigt A, Roeckner E (2017) MPI-M MPIESM1.2-HR model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.762

  • Wallace JM, Smith C, Jiang Q (1990) Spatial patterns of atmosphere-ocean interaction in the northern winter. J Climate 3:990–998

    Article  Google Scholar 

  • Wallace JM et al (1998) On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103:14241–14259

    Article  Google Scholar 

  • Wang W, Anderson BT, Kaufmann RK, Ranga B, Myneni RB (2004) The relation between the North Atlantic Oscillation and SSTs in the North Atlantic Basin. J Clim 17:4752–4759. https://doi.org/10.1175/JCLI-3186.1

    Article  Google Scholar 

  • Watanabe M, Kimoto M (2000) Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q J R Meteorol Soc 126:3343–3369

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the three anonymous reviwers for their worthy comments that helped in improving the manuscript. The authors acknowledge the International Center for Theoretical physics for providing support to carry out this research work. The study was further supported by the Center of Excellence for Climate Change Research, King Abdulaziz University, Saudi Arabia. The corresponding author also thank Prof. Nicole van Lipzig from Department of Earth and Environmental Sciences, KU Leuven for her feedback and support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Saeed.

Ethics declarations

Conflict of interest

Author declares no conflict of interest. The data and scripts can be provided on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24554 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, S., Kucharski, F. & Almazroui, M. Impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula: the explicit role of NAO. Clim Dyn 60, 147–164 (2023). https://doi.org/10.1007/s00382-022-06313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06313-1

Keywords

Navigation