Skip to main content

Advertisement

Log in

Interdecadal changes in SST variability drivers in the Senegalese-upwelling: the impact of ENSO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sea surface temperature (SST) variability in the North Eastern Tropical Atlantic has its center of action in the Senegalese–Mauritanian upwelling system, where its drivers are wind-induced ocean dynamics and air–sea thermodynamic processes. Thus, a better understanding of the local wind variations, together with their predictability, contributes to a more comprehensive assessment of the SST variability in that region. In this study, we use monthly data from two ocean reanalyses, SODA and ORAS-5, and a regional forced-ocean simulation to characterize the interannual SST variability off the Senegalese Coast in the common period 1960–2008. Local indices of the mixed layer heat budget during the major upwelling season (February–March–April) exhibit pronounced interannual to decadal variability. We demonstrate that the local interannual SST variability undergoes inter-decadal fluctuation and concomitant changes in its local and remote drivers. Off-Senegal SST variability was largely controlled by wind-induced Ekman transport during the 1960s–1970s, acting under favorable thermocline and mixed layer conditions. However, from 1980s onwards, the drastically reduced Ekman impact observed on local SSTs is associated with a deeper thermocline. This shift in the effectiveness of the dynamic mechanisms coincides with a more active ENSO teleconnection with upwelling before the 1980s. An extended SODA record reveals that the multidecadal modulator of the ENSO impact on the North-eastern Tropical Atlantic resembles the negative phase of the Atlantic Multidecadal Variability. Our results bring to light the fundamental role played by the global decadal background state in the activation of the drivers and air-sea mechanisms responsible for generating the interannual off-Senegal SST variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Alexander M, Scott J (2002) The influence of ENSO on air-sea interaction in the Atlantic. Geophys Res Lett 29(14):46–51

    Article  Google Scholar 

  • Amaya DJ, Foltz GR (2014) Impacts of canonical and Modoki El Niño on tropical Atlantic SST. J Geophys Res Oceans 119(2):777–789

    Article  Google Scholar 

  • Amaya DJ, DeFlorio MJ, Miller AJ, Xie SP (2017) WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons. Clim Dyn 49(5–6):1665–1679

    Article  Google Scholar 

  • Aoki S (2003) Multidecadal warming of subsurface temperature in the Indian sector of the Southern Ocean. J Geophys Res 108:8081. https://doi.org/10.1029/2000JC000307

    Article  Google Scholar 

  • Bakun A (1973) Coastal upwelling indices, west coast of North America, 1946-71. U.S.Dep. Commer., NOAA Tech. Rep., NMFS SSRF-671, p 103

  • Bricaud A, Morel A, Andre ́ J-M (1987) Spatial/temporal variability of algal biomass in the mauritanian upwelling zone, as estimated from CZCS data. Adv Space Res 7(2):53–62

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31(3–4):88–104

    Article  Google Scholar 

  • Carton JA, Chepurin GA, Chen L (2018) SODA3: A new ocean climate reanalysis. J Clim 31(17):6967–6983

    Article  Google Scholar 

  • Castelao RM, Wang Y (2014) Wind-driven variability in sea surface temperature front distribution in the California Current System. J Geophys Res Oceans 119:1861–1875. https://doi.org/10.1002/2013JC009531

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Compo GP et al (2011) The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 137:1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Cropper TE, Hanna E, Bigg GR (2014) Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012. Deep Sea Res Part I 86:94–111

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Vitart F (2011) The ERA Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Diakhaté M, De Coëtlogon G, Lazar A, Wade M, Gaye AT (2016) Intraseasonal variability of tropical Atlantic sea-surface temperature: air–sea interaction over upwelling fronts. Q J R Meteorol Soc 142(694):372–386. https://doi.org/10.1002/qj.2657

    Article  Google Scholar 

  • Dieppois B, Durand A, Fournier M, Diedhiou A, Fontaine B, Massei N, Sebag D (2015) Low-frequency variability and zonal contrast in Sahel rainfall and Atlantic sea surface temperature teleconnections during the last century. Theoret Appl Climatol 121(1–2):139–155

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705. https://doi.org/10.1029/2006GL025766

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos Filtering in One and Two Dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic SST variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Faye S, Lazar A, Sow BA, Gaye AT (2015) A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-eastern Tropical Upwelling System. Front Phys 3:76

    Article  Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288(5473):1997–2002

    Article  Google Scholar 

  • Florenchie P, Lutjeharms JRE, Reason CJC, Masson S, Rouault M (2003) The source of Benguela Niños in the South Atlantic Ocean. Geophys Res Lett 30(10):1505. https://doi.org/10.1029/2003GL017172

    Article  Google Scholar 

  • Foltz GR, Brandt P, Richter I, Rodríguez-Fonseca B, Hernandez F, Dengler M, Reul N (2019) The tropical Atlantic observing system. Front Mar Sci 6:206

    Article  Google Scholar 

  • García-Serrano J, Cassou C, Douville H, Giannini A, Doblas-Reyes FJ (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic. J Clim. https://doi.org/10.1175/JCLI-D-16-0641.1

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res Oceans 116:C02024. https://doi.org/10.1029/2010JC006695

    Article  Google Scholar 

  • Giese BS, Seidel HF, Compo GP, Sardeshmukh PD (2016) An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J Geophys Res Oceans 121(9):6891–6910

    Article  Google Scholar 

  • Graham NE (1994) Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results. Clim Dyn 10:135–162. https://doi.org/10.1007/BF00210626

    Article  Google Scholar 

  • Guilderson TP, Schrag DP (1998) Abrupt Shift in Subsurface Temperatures in the Tropical Pacific Associated with Changes in El Niño. Science 281:240–243. https://doi.org/10.1126/science.281.5374.240

    Article  Google Scholar 

  • Herbland A, Voituriez B (1974) La production primaire dans l’upwelling mauritanien en mars 1973. Cah ORSTOM Sér Océanogr 12(3):187–201

    Google Scholar 

  • Huntsman SA, Barber RT (1977) Primary production off north-west Africa: the relationship to wind and nutrient conditions. Deep SeaRes 24:25–33

    Article  Google Scholar 

  • Illig S, Bachèlery ML (2019) Propagation of subseasonal equatorially-forced coastal trapped waves down to the benguela upwelling system. Sci Rep 9:5306. https://doi.org/10.1038/s41598-019-41847-1

    Article  Google Scholar 

  • Jacox MG, Edwards CA, Hazen EL, Bograd SJ (2018) Coastal upwelling revisited: ekman, bakun, and improved upwelling indices for the U.S. West Coast. J Geophys Res 123:7332–7350. https://doi.org/10.1029/2018JC014187

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10631

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Lee SK, Enfield DB, Wang C (2008) Why do some El Niños have no impact on tropical North Atlantic SST? Geophys Res Lett 35:L16705. https://doi.org/10.1029/2008GL034734

    Article  Google Scholar 

  • Levine AF, McPhaden MJ, Frierson DM (2017) The impact of the AMO on multidecadal ENSO variability. Geophys Res Lett 44(8):3877–3886

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. https://doi.org/10.1029/2011GL050049

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B, Terray L (2015) A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Clim Dyn 45(3–4):867–880

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B, Dommenget D, Frauen C (2016) ENSO influence on the North Atlantic European climate: a non-linear and non-stationary approach. Clim Dyn 47(7–8):2071–2084

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. https://doi.org/10.1029/2012GL052423

    Article  Google Scholar 

  • Lübbecke JF, Böning CW, Keenlyside NS, Xie SP (2010) On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. J Geophys Res 115:C09015. https://doi.org/10.1029/2009JC005964

    Article  Google Scholar 

  • Mariotti A, Zeng N, Lau KM (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29(12):59–61

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Losada T, Lazar A (2018) Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record? J Clim 31(2):515–536

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Lazar A, Losada T (2019) Ocean dynamics shapes the structure and timing of Atlantic Equatorial Modes. J Geophys Res Oceans 124(11):7529–7544

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–1998 El Niño. Science 283:950–954

    Article  Google Scholar 

  • Monterey GI, Levitus S, (1997) Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, 5 pp. and 87 figs

  • Ndoye S, Capet X, Estrade P, Sow B, Dagorne D, Lazar A, Gaye A, Brehmer P (2014) SST patterns and dynamics of the southern Senegal-Gambia upwelling center. J Geophys Res Oceans 119:8315–8335. https://doi.org/10.1002/2014JC010242

    Article  Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn Ser II 67:375–383. https://doi.org/10.2151/jmsj1965.67.3_375

    Article  Google Scholar 

  • Nykjaer L, Van Camp L (1994) Seasonal and interannual variability of coastal upwelling along northwest Africa and Portugal from 1981 to 1991. J Geophys Res 99(C7):14197–14207

    Article  Google Scholar 

  • Oettli P, Morioka Y, Yamagata T (2016) A regional climate mode discovered in the North Atlantic: Dakar Niño/Niña. Sci Rep 6:18782. https://doi.org/10.1038/srep18782

    Article  Google Scholar 

  • Okumura Y, Xie SP (2006) Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J Clim 19(22):5859–5874

    Article  Google Scholar 

  • Polo I, de Fonseca BR, Sheinbaum J (2005) Northwest Africa upwelling and the Atlantic climate variability. Geophys Res Lett 32:L23702. https://doi.org/10.1029/2005GL023883

    Article  Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Arnault S (2008) Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization. J Geophys Res 113:C07009. https://doi.org/10.1029/2007JC004495

    Article  Google Scholar 

  • Rayner NAA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. https://doi.org/10.1029/2009GL040048

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Joly M (2011) Interannual and decadal SST-forced responses of the West African monsoon. Atmos Sci Lett 12(1):67–74

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Mohino E, Mechoso CR, Caminade C, Biasutti M, Gaetani M, Polo I (2015) Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J Clim 28(10):4034–4060

    Article  Google Scholar 

  • Roy C, Reason C (2001) ENSO related modulation of coastal upwelling in the eastern Atlantic. Prog Oceanogr 49:245–255

    Article  Google Scholar 

  • Santos MP, Kazmin AS, Peliz A (2005) Decadal changes in theCanary upwelling system as revealed by satellite observations: Their impact on productivity. J Mar Res 63:359–379

    Article  Google Scholar 

  • Suárez-Moreno R, Rodríguez-Fonseca B, Barroso JA, Fink AH (2018) Interdecadal changes in the leading ocean forcing of Sahelian rainfall interannual variability: atmospheric dynamics and role of multidecadal SST background. J Clim 31(17):6687–6710

    Article  Google Scholar 

  • Sutton RT, Jewson SP, Rowell DP (2000) The elements of cli-mate variability in the tropical Atlantic region. J Climate 13:3261–3284

    Article  Google Scholar 

  • Sylla A, Mignot J, Capet X, Gaye AT (2019) Weakening of the Senegalo-Mauritanian upwelling system under climate change. Clim Dyn 53(7):4447–4473

    Article  Google Scholar 

  • Trascasa-Castro P, Ruprich-Robert Y, Castruccio F, Maycock AC (2021) Warm phase of AMV damps ENSO through weakened thermocline feedback. Geophys Res Lett 48:e2021GL096149. https://doi.org/10.1029/2021GL096149

    Article  Google Scholar 

  • Taschetto AS, Rodrigues RR, Meehl GA, McGregor S, England MH (2016) How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Clim Dyn 46(5):1841–1860

    Article  Google Scholar 

  • Terray P (1994) An evaluation of climatological data in the Indian Ocean Area. J Meteorol Soc Jpn 72:359–386. https://doi.org/10.2151/jmsj1965.72.3_359

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319. https://doi.org/10.1007/BF00204745

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Van Camp L, Nykjaer L, Mittelstaedt E, Schlittenhardt P (1991) Upwelling and boundary circulation off northwest Africa as depicted by infrared and visible satellite observations. Prog Oceanogr 26:357–402

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wang CZ (2006) An overlooked feature of tropical climate: Inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. https://doi.org/10.1029/2006GL026324

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences (Vol. 100). Academic Press

    Google Scholar 

  • Wooster W, Bakun A, McLain D (1976) The seasonal upwelling cycle along the eastern boundary of the north Atlantic. J Mar Res 34:131–141

    Google Scholar 

  • Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance 12to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Yu J-Y, Kao P, Paek H, Hsu H-H, Hung C, Lu M-M, An S-I (2015) Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J Clim 28:651–662. https://doi.org/10.1175/JCLI-D-14-00347.1

    Article  Google Scholar 

  • Zhang C (2001) Intraseasonal perturbations in sea surface temperatures of the equatorial eastern Pacific and their association with the Madden-Julian Oscillation. J Clim 14(1309–1322):2001

    Google Scholar 

  • Zhang W, Mei X, Geng X, Turner AG, Jin FF (2019) A Nonstationary ENSO–NAO relationship due to AMO modulation. J Clim 32(1):33–43

    Article  Google Scholar 

  • Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M (2019) The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci 15(3):779–808

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the CSIC ICOOP projects: ICOOPB20204, ICOOPB20358 (the UCM Cooperation Project from XIV and XVII calls); the Spanish Project CGL2017- 86415-R; the EU/FP7 PREFACE (Grant Agreement 603521). The authors would like to thank Jean-Marc Molines for his invaluable assistance in conducting the simulations with the ATLTROP025 model. MMR received funding from the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236) and from a Juan de la Cierva Incorporation (IJC2019-041150-I) research contract of MICINN (Spain). This work was also supported by the TRIATLAS project, which has received funding from the European Union’s Horizon 2020 research and innovation program under Grant agreement No 817578."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malick Wade.

Ethics declarations

Competing interests

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wade, M., Rodríguez-Fonseca, B., Martín-Rey, M. et al. Interdecadal changes in SST variability drivers in the Senegalese-upwelling: the impact of ENSO. Clim Dyn 60, 667–685 (2023). https://doi.org/10.1007/s00382-022-06311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06311-3

Keywords

Navigation