Akhtar N, Brauch J, Dobler A, Béranger K, Ahrens B (2014) Medicanes in an ocean–atmosphere coupled regional climate model. Nat Hazards Earth Syst Sci 14:2189–2201. https://doi.org/10.5194/nhess-14-2189-2014
Article
Google Scholar
Akperov M, Rinke A et al (2019) Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global Planet Change. https://doi.org/10.1016/j.gloplacha.2019.103005
Article
Google Scholar
Alpert P, Neeman BU, Shay-El Y (1990) Climatological analysis of Mediterranean Cyclones using ECMWF data. Tellus 42A:65–77
Article
Google Scholar
Buzzi A, Davolio S, Fantini M (2020) Cyclogenesis in the lee of the Alps: a review of theories. Bull Atmos Sci Technol 1:433–457. https://doi.org/10.1007/s42865-020-00021-6
Article
Google Scholar
Campins J, Genovés A, Picornell MA, Jansà A (2010) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol. https://doi.org/10.1002/joc.2183
Article
Google Scholar
Cavicchia L, von Storch H, Gualdi S (2014) Mediterranean tropical-like cyclones in present and future climate, J Climate 27(19): 7493–7501. Retrieved Mar 25, 2021, from https://journals.ametsoc.org/view/journals/clim/27/19/jcli-d-14-00339.1.xml
Cavicchia L, Gualdi S, Sanna A, Oddo P (2015) The regional ocean atmosphere coupled model COSMONEMO_MFS. CMCC Research Papers. Italy, Bologna, pp 1–22. https://www.cmcc.it/wp-content/uploads/2015/04/rp0254-csp-04-2015.pdf
Google Scholar
Conte D, Gualdi S, Lionello P (2020) Effect of model resolution on intense and extreme precipitation in the Mediterranean region. Atmosphere 11(7):699. https://doi.org/10.3390/atmos1107069
Article
Google Scholar
Darmaraki S, Somot S, Sevault F, Nabat P, Cabos W, Cavicchia L, Djurdjevic V, Li L, Sannino G, Sein D (2019) Future evolution of marine heat waves in the Mediterranean sea. Clim Dyn 53(3–4):1371–1392. https://doi.org/10.1007/s00382-019-04661-z
Article
Google Scholar
Djurdjevic V, Rajkovic B (2008) Verification of a coupled atmosphere–ocean model using satellite observations over the Adriatic Sea. Ann Geophys 26(7):1935–1954. https://doi.org/10.5194/angeo-26-1935-2008
Article
Google Scholar
Donat M, Leckebusch G et al (2011) Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCSM multi-model simulations. Nat Hazards Earth Syst Sci 11:1351–1370. https://doi.org/10.5194/nhess-11-1351-2011
Article
Google Scholar
Dufresne JL, Foujols MA, Denvil S et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. https://doi.org/10.1007/s00382-012-1636-1
Article
Google Scholar
Fantini A, Raffaele F, Torma C et al (2018) Assessment of multiple daily precipitation statistics in ERA-interim driven med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn 51:877. https://doi.org/10.1007/s00382-016-3453-4
Article
Google Scholar
Flaounas E, Drobinski P, Bastin S (2013) Dynamical downscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Clim Dyn 40:2497–2513. https://doi.org/10.1007/s00382-012-1606-7
Article
Google Scholar
Flaounas E, Di Luca A, Drobinski P, Mailler S, Arsouze T, Bastin S, Beranger K, Lebeaupin Brossier C (2016) Cyclones contribution to the Mediterranean Sea water budget. Clim Dynam. https://doi.org/10.1007/s00382-015-2622-1
Article
Google Scholar
Flaounas E, Kotroni V, Lagouvardos K, Gray S, Rysman JF, Claud C (2017) Heavy rainfall in Mediterranean cyclones, part I: contribution of deep convection and warm conveyor belts. Clim Dynam. https://doi.org/10.1007/s00382-017-3783-x
Article
Google Scholar
Flaounas E, Kelemen FD, Wernli H, Gaertner MA, Reale M, Sanchez-Gomez E, Lionello P, Calmanti S, Podrascanin Z, Somot S, Akhtar N, Romera R, Conte D (2018) Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim Dyn 51:1023–1040. https://doi.org/10.1007/s00382-016-3398-7
Article
Google Scholar
Flaounas E, Gray SL, Teubler F (2021a) A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems. Weather Clim Dynam 2:255–279. https://doi.org/10.5194/wcd-2-255-2021
Article
Google Scholar
Flaounas E, Davolio S, Raveh-Rubin S, Pantillon F, Miglietta MM, Gaertner ΜA, Hatzaki M, Homar V, Khodayar S, Korres G, Kotroni V, Kushta J, Reale M, Ricard D (2021b) Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim Dynam Discuss. https://doi.org/10.5194/wcd-2021-55 (preprint, in review)
Article
Google Scholar
Gaertner MÁ, González-Alemán JJ, Romera R et al (2018) Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution. Clim Dyn 51:1041–1057. https://doi.org/10.1007/s00382-016-3456-1
Article
Google Scholar
Galanaki E, Flaounas E, Kotroni V, Lagouvardos K, Argiriou A (2016) Lightning activity in the Mediterranean: quantification of cyclones contribution and relation to their intensity. Atmos Sci Lett 17:510–516. https://doi.org/10.1002/asl.685
Article
Google Scholar
Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. https://doi.org/10.1002/jame.20038
Article
Google Scholar
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58.3:175
Google Scholar
Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
Article
Google Scholar
Hochman A, Harpaz T, Saaroni H, Alpert P (2018a) Synoptic classification in 21st century CMIP5 predictions over the Eastern Mediterranean with focus on cyclones. Int J Climatol 38(3):1476–1483. https://doi.org/10.1002/joc.5260
Article
Google Scholar
Hochman A, Harpaz T, Saaroni H, Alpert P (2018b) The seasons’ length in 21st century CMIP5 projections over the Eastern Mediterranean. Int J Climatol 38(6):2627–2637. https://doi.org/10.1002/joc.5448
Article
Google Scholar
Hochman AA, Kunin P et al (2020) The dynamics of cyclones in the twenty-first century: the Eastern Mediterranean as an example. Clim Dyn 54:561–574. https://doi.org/10.1007/s00382-019-05017-3
Article
Google Scholar
Hochman A, Marra F, Messori G, Pinto JG, Raveh-Rubin S, Yosef Y, Zittis G (2021) ESD reviews: extreme weather and societal impacts in the eastern Mediterranean. Earth Syst Dyn Discuss. https://doi.org/10.5194/esd-2021-55 (Preprint, in review)
Article
Google Scholar
Hoskins BJ, Hodges KI (2019a) The annual cycle of northern hemisphere storm tracks. Part I: seasons. J Clim 32(6):1743–1760. https://doi.org/10.1175/JCLI-D-17-0870.1
Article
Google Scholar
Hoskins BJ, Hodges KI (2019b) The annual cycle of northern hemisphere storm tracks. Part II: regional detail. J Clim 32.6:1761–1775. https://doi.org/10.1175/JCLI-D-17-0871.1
Article
Google Scholar
IPCC (2014) Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change
Kelley C, Ting M, Seager R, Kushnir Y (2012) Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys Res Lett 39:L21703. https://doi.org/10.1029/2012GL053416
Article
Google Scholar
Kouroutzoglou J, Flocas HA, Keay K, Simmonds I, Hatzaki M (2010) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol. https://doi.org/10.1002/joc.2203
Article
Google Scholar
Kouroutzoglou J, Flocas HA, Simmonds I et al (2011) Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor Appl Climatol 105:263–275. https://doi.org/10.1007/s00704-010-0390-8
Article
Google Scholar
L’Hévéder B, Li L, Sevault F et al (2013) Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Clim Dyn 41:937–960. https://doi.org/10.1007/s00382-012-1527-5
Article
Google Scholar
Li S, Li L, Le Treut H (2021) An idealized protocol to assess the nesting procedure in regional climate modelling. Int J Climatol 41:1246–1263. https://doi.org/10.1002/joc.6801
Article
Google Scholar
Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12(12):153–153
Article
Google Scholar
Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios. Clim Res 22:147–159. https://doi.org/10.3354/cr022147
Article
Google Scholar
Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak S, Jansà A, Maheras P, Sanna A, Trigo IF, Trigo R (2006) Cyclones in the Mediterranean region: climatology and effects on the environment. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier (NETHERLANDS), Amsterdam, pp 325–372
Google Scholar
Lionello P, Abrantes F, Congedi L, Dulac F, Gacic M, Gomis D et al (2012) Introduction: Mediterranean climate: background information. In: Lionello P (ed) The climate of the Mediterranean region. From the past to the future. Elsevier (NETHERLANDS), Amsterdam, pp XXXV–IXXX (ISBN:9780124160422)
Google Scholar
Lionello P, Trigo IF, Gil V, Liberato ML, Nissen KM, Pinto JG, Raible CC, Reale M, Tanzarella A, Trigo RM, Ulbrich S, Ulbrich U (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A 68:29391. https://doi.org/10.3402/tellusa.v68.29391
Article
Google Scholar
Lionello P, Conte D, Reale M (2019) The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast. Nat Hazards Earth Syst Sci 19(7):1541–1564
Article
Google Scholar
Lionello P, Barriopedro D, Ferrarin D, Nicholls CRJ, Orlic M, Raicich F, Reale M, Umgiesser G, Vousdoukas M, Zanchettin D (2020) Extremes floods of Venice: characteristics, dynamics, past and future evolution. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2020-359 (in review)
Article
Google Scholar
Maheras P, Flocas H, Patrikas I, Anagnostopoulou C (2001) A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130
Article
Google Scholar
Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J, Gulev S, Hanley J, Hewson T, Inatsu M, Keay K, Kew SF, Kindem I, Leckebusch GC, Liberato MLR, Lionello P, Mokhov II, Pinto JG, Raible CC, Reale M, Rudeva I, Schuster M, Simmonds I, Sinclair M, Sprenger M, Tilinina ND, Trigo IF, Ulbrich S, Ulbrich U, Wang XL, Wernli H (2013) IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties. Bull Am Met Soc 94:529–547. https://doi.org/10.1175/BAMS-D-11-00154.1
Article
Google Scholar
Nissen KM, Leckebusch GC, Pinto JC, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazard 10:1379–1391
Article
Google Scholar
Nissen KM, Leckebusch GC, Pinto JC, Ulbrich U (2014) Mediterranean cyclones and windstorms in a changing climate. Reg Environ Change 14:1873. https://doi.org/10.1007/s10113-012-0400-8
Article
Google Scholar
Pinto JG, Ulbrich S, Economou T, Stephenson DB, Karremann MK, Shaffrey LC (2016) Robustness of serial clustering of extratropical cyclones to the choice of tracking method. Tellus a: Dyn Meteorol Oceanogr 68(1):32204
Article
Google Scholar
Raible CC, Ziv B, Saaroni H et al (2010) Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Clim Dyn 35:473–488. https://doi.org/10.1007/s00382-009-0678-5
Article
Google Scholar
Reale M, Lionello P (2013) Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat Hazard 13(7):1707–1722
Article
Google Scholar
Reale M, Liberato MLR, Lionello P, Pinto JC, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus a: Dyn Meteorol Oceanogr 71:1. https://doi.org/10.1080/16000870.2019.1611340
Article
Google Scholar
Reale M, Giorgi F, Solidoro C, Di Biagio V, Di Sante F, Mariotti L, Farneti R, Sannino G (2020) The regional earth system model RegCM-ES: evaluation of the Mediterranean climate and marine biogeochemistry. J Adv Model Earth Syst 12:e2019MS001812
Article
Google Scholar
Reboita MS, Reale M, da Rocha RP et al (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z
Article
Google Scholar
Reboita MS, Crespo NM, Torres JA et al (2021) Future changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Clim Dyn. https://doi.org/10.1007/s00382-021-05867-w
Article
Google Scholar
Rixen M et al (2005) The western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32:L12608. https://doi.org/10.1029/2005GL022702
Article
Google Scholar
Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E et al (2016) MED-CORDEX initiative for Mediterranean climate studies. BAMS https://doi.org/10.1175/Tech.repBAMS-D-14-00176.1
Google Scholar
Sanchez-Gomez E, Somot S (2018) Impact of the internal variability on the cyclone tracks simulated by a regional climate model over the Med-CORDEX domain. Clim Dyn 51(3):1005–1021
Article
Google Scholar
Seager R, Liu H, Henderson N, Simpson I, Kelley C, Shaw T, Ting M (2014) Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. J Clim 27(12):4655–4676
Article
Google Scholar
Sein DV, Mikolajewicz U, Gröger M, Fast I, Cabos W, Pinto JG et al (2015) Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and VALIDATION. J Adv Model Earth Syst 7(1):268–304. https://doi.org/10.1002/2014MS000357
Article
Google Scholar
Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff F, Déqué M, Decharme B (2014) A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A 66:23967. https://doi.org/10.3402/tellusa.v66.23967
Article
Google Scholar
Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384. https://doi.org/10.1175/2011JCLI4104.1
Article
Google Scholar
Scoccimarro E, Gualdi S, Villarini G, Vecchi G, Zhao M, Walsh K, Navarra A (2014) Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J Clim. https://doi.org/10.1175/JCLI-D-14-00065.1
Article
Google Scholar
Shepherd TG (2019) Storyline approach to the construction of regional climate change information. Proc Royal Soc A 475(2225):20190013
Article
Google Scholar
Somot (2005) Modélisation climatique du bassin méditerranéen: variabilité et scénarios de changement climatique. Ph-D thesis. Université Paul Sabatier, Toulouse-France. pp 333 (in French)
Somot S, Ruti P, Ahrens B, Coppola E, Jordà G, Sannino G, Solmon F (2018) Editorial for the Med-CORDEX special issue. Clim Dyn 51(3):771–777. https://doi.org/10.1007/s00382-018-4325-x
Article
Google Scholar
Soto-Navarro J, Jordà G, Amores A, Cabos W, Somot S, Sevault F, Macías D, Djurdjevic V, Sannino G, Li L, Sein D (2020) Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble. Clim Dyn 54:2135–2165. https://doi.org/10.1007/s00382-019-05105-4
Article
Google Scholar
Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Climate 14:2079–2087
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Article
Google Scholar
Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazard 10(5):1037–1050
Article
Google Scholar
Trigo IF (2006) Climatology and interannual variability of storm tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Clim Dyn 26:127–143. https://doi.org/10.1007/s00382-005-0065-9
Article
Google Scholar
Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Climate 12(6):1685–1696
Article
Google Scholar
Tuel A, Kang S, Eltahir EAB (2020) Understanding climate change over the southwestern Mediterranean using high-resolution simulations. Clim Dyn 56:985–1001. https://doi.org/10.1007/s00382-020-05516-8
Article
Google Scholar
Ulbrich U, Lionello P, Belušic D, Jacobeit J, Knippertz P, Kuglitsch F, Leckebusch GC, Luterbacher J, Maugeri M, Maheras P, Nissen KM, Pavan V, Pinto JC, Saaroni H, Seubert S, Toreti A, Xoplaki E, Ziv B (2012) Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: Lionello P (ed) The climate of the Mediterranean region. From the past to the future. Elsevier (NETHERLANDS), Amsterdam, pp 301–346 (ISBN:9780124160422)
Google Scholar
Ulbrich U, Leckebusch GC, Grieger J, Schuster M, Akperov M, Bardin MY, Feng Y, Gulev S, Inatsu M, Keay K, Kew SF, Liberato MLR, Lionello P, Mokhov II, Neu U, Pinto JG, Raible CC, Reale M, Rudeva I, Simmonds I, Tilinina ND, Trigo IF, Ulbrich S, Wang XL, Wernli H (2013) Are greenhouse gas signals of northern hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorol Z 22:61–68. https://doi.org/10.1127/0941-2948/2013/0420
Article
Google Scholar
Villarini G, Lavers DA, Scoccimarro E, Zhao M, Wehner MF, Vecchi G, Knutson T (2014) Sensitivity of tropical cyclone rainfall to idealized global scale forcings. J Clim. https://doi.org/10.1175/JCLI-D-13-00780.1
Article
Google Scholar
Voldoire A, Sanchez-Gomez E et al (2011) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. https://doi.org/10.1007/s00382-011-1259-y
Article
Google Scholar
Zappa G, Shepherd TG (2017) Storylines of atmospheric circulation change for European regional climate impact assessment. J Clim 30(16):6561–6577
Article
Google Scholar
Zappa G, Hawcroft MK, Shaffrey L et al (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738. https://doi.org/10.1007/s00382-014-2426-8
Article
Google Scholar
Zhang W, Villarini G, Scoccimarro E, Napolitano F (2020) Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. Int J Climatol. https://doi.org/10.1002/joc.6669
Article
Google Scholar