Skip to main content

Advertisement

Log in

Memory of land surface and subsurface temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study applies three widely used land models (SSiB, CLM, and Noah-MP) coupled in a regional climate model to quantitatively assess their skill in preserving the imposed ± 5 °C anomalies on the initial land surface and subsurface temperature (LST/SUBT) and generating the 2-m air temperature (T2m) anomalies over Tibetan Plateau (TP) during May–August. The memory of the LST/SUBT initial anomalies (surface/soil memory) is defined as the first time when time series of the differences in daily LST/SUBT cross the zero line during the simulation, with the unit of days. The memory of the T2m anomalies (T2m memory) is defined in the same way. The ensemble results indicate that the simulated soil memory generally increases with soil depth, which is consistent with the results based on the observations with statistic methods. And the soil memory is found to change rapidly with depth above ~ 0.6–0.7 m and vary slowly below it. The land models have fairly long soil memories, with the regional mean 1.0-m soil memory generally longer than 60 days. However, they have short T2m memory, with the regional means generally below 20 days. This may bring a big challenge to use the LST/SUBT approach on the sub-seasonal to seasonal (S2S) prediction. Comparison between the three land models shows that CLM and Noah-MP have longer soil memory at the deeper layers (> ~ 0.05 m) while SSiB has longer T2m/surface memories and near-surface (\(\le\) ~ 0.05 m) soil memory. As a result, it is difficult to say which land model is optimal for the application of the LST/SUBT approach on the S2S prediction. The T2m/surface/soil memories are various over TP, distinct among the land models, and different between the + 5 °C and − 5 °C experiment, which can be explained by both changes in the surface heat fluxes and variances in the hydrological processes over the plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barlow M, Nigam S, Berbery EH (2001) ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. J Climate 14(9):2105–2128

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer DP (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Diallo I, Xue Y, Li Q, De Sales F, Li W (2019) Dynamical downscaling the impact of spring Western US land surface temperature on the 2015 flood extremes at the Southern Great Plains: effect of domain choice, dynamic cores and land surface parameterization. Clim Dyn 53(1):1039–1061

    Article  Google Scholar 

  • Diallo I, Xue Y, Chen Q, Ren X, Guo W (2021) Effects of spring tibetan plateau land temperature anomalies on early summer floods/droughts over the monsoon regions of East Asia and South Asia. Clim Dyn

  • Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather Forecast 26(4):520–533

    Article  Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020) The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data 7(1):25

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Hu Q, Feng S (2004) A role of the soil enthalpy in land memory. J Clim 17(18):3633–3643

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res Atmos 113(D13):317

    Article  Google Scholar 

  • Jia X, Yang S (2013) Impact of the quasi-biweekly oscillation over the western north pacific on east asian subtropical monsoon during early summer. J Geophys Res Atmos 118(10):4421–4434

    Article  Google Scholar 

  • Liu Y, Xue Y, Li Q (2020) Investigation of the variability of near surface temperature anomaly and its causes over the Tibetan Plateau. J Geophys Res Atmos 25(4):2089–2107

    Google Scholar 

  • Mei R, Wang G (2011) Impact of sea surface temperature and soil moisture on summer precipitation in the united states based on observational data. J Hydrometeorol 12(5):1086–1099

    Article  Google Scholar 

  • Merryfield WJ, Baehr J, Batté L, Becker EJ, Butler AH, Coelho CAS, Danabasoglu G, Dirmeyer PA, Doblas-Reyes FJ, Domeisen DIV, Ferranti L, Ilynia T, Kumar A, Müller WA, Rixen M, Robertson AW, Smith DM, Takaya Y, Tuma M, Vitart F, White CJ, Alvarez MS, Ardilouze C, Attard H, Baggett C, Balmaseda MA, Beraki AF, Bhattacharjee PS, Bilbao R, de Andrade FM, DeFlorio MJ, Díaz LB, Ehsan MA, Fragkoulidis G, Grainger S, Green BW, Hell MC, Infanti JM, Isensee K, Kataoka T, Kirtman BP, Klingaman NP, Lee J-Y, Mayer K, McKay R, Mecking JV, Miller DE, Neddermann N, Justin Ng CH, Ossó A, Pankatz K, Peatman S, Pegion K, Perlwitz J, Recalde-Coronel GC, Reintges A, Renkl C, Solaraju-Murali B, Spring A, Stan C, Sun YQ, Tozer CR, Vigaud N, Woolnough S, Yeager S (2020) Current and emerging developments in subseasonal to decadal prediction. Bull Am Meteor Soc 101(6):E869–E896

    Article  Google Scholar 

  • Mo KC, Schemm J-KE, Yoo S-H (2009) Influence of ENSO and the atlantic multidecadal oscillation on drought over the United States. J Clim 22(22):5962–5982

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The Community Noah Land Surface Model With Multiparameterization Options (Noah-Mp): 1. Model Description And Evaluation With Local-Scale Measurements. J Geophys Res Atmos 116

  • Oleson KW, Lawrence DM, Gordon B, Flanner MG, Kluzek E, Peter J, Levis S, Swenson SC., Thornton, E, Feddema, J (2010) Technical description of version 4.0 of the community land model (Clm)

  • Pu B, Fu R, Dickinson RE, Fernando DN (2016) Why do summer droughts in the Southern Great Plains occur in some La Nina years but not others? J Geophys Res Atmos 121(3):1120–1137

    Article  Google Scholar 

  • Rajagopalan B, Cook E, Lall U, Ray BK (2000) Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. J Clim 13(24):4244–4255

    Article  Google Scholar 

  • Scaife AA, Kucharski F, Folland CK, Kinter J, Broennimann S, Fereday D, Fischer AM, Grainger S, Jin EK, Kang IS, Knight JR, Kusunoki S, Lau NC, Nath MJ, Nakaegawa T, Pegion P, Schubert S, Sporyshev P, Syktus J, Yoon JH, Zeng N, Zhou T (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33(5):603–614

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) Causes of long-term drought in the US great plains. J Clim 17(3):485–503

    Article  Google Scholar 

  • Schubert S, Gutzler D, Wang H, Dai A, Delworth T, Deser C, Findell K, Fu R, Higgins W, Hoerling M, Kirtman B, Koster R, Kumar A, Legler D, Lettenmaier D, Lyon B, Magana V, Mo K, Nigam S, Pegion P, Phillips A, Pulwarty R, Rind D, Ruiz-Barradas A, Schemm J, Seager R, Stewart R, Suarez M, Syktus J, Ting M, Wang C, Weaver S, Zeng N (2009) A US CLIVAR project to assess and compare the responses of global climate models to drought-related sst forcing patterns: overview and results. J Clim 22(19):5251–5272

    Article  Google Scholar 

  • Seager R, Goddard L, Nakamura J, Henderson N, Lee DE (2014) Dynamical causes of the 2010/11 texas-northern mexico drought. J Hydrometeorol 15(1):39–68

    Article  Google Scholar 

  • Shukla RP, Huang B, Dirmeyer PA, Kinter JL (2019) The influence of summer deep soil temperature on early winter snow conditions in eurasia in the NCEP CFSv2 simulation. J Geophys Res Atmos 124(16):9062–9077

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR

  • Su Z, Wen J, Dente L, van der Velde R, Wang L, Ma Y, Yang K, Hu Z (2011) The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol Earth Syst Sci 15(7):2303–2316

    Article  CAS  Google Scholar 

  • Ting MF, Wang H (1997) Summertime US precipitation variability and its relation to Pacific sea surface temperature. J Clim 10(8):1853–1873

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Arkin PA (1988) Origins of the 1988 north-american drought. Science 242(4886):1640–1645

    Article  CAS  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14)

  • Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8(4):770–789

    Article  Google Scholar 

  • Wu Y, Liu Y, Li J, Bao Q, He B, Wang L, Wang X, Li J (2021) Analysis of surface temperature bias over the Tibetan plateau in the CAS FGOALS-f3-L model: 关于 CAS FGOALS-f3-L 模式中青藏高原地表温度偏差的归因分析. Atmos Ocean Sci Lett 14(1):100012

    Article  Google Scholar 

  • Xue Y, Sellers P, Kinter J, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364

    Article  Google Scholar 

  • Xue Y, De Sales F, Lau WKM, Boone A, Kim K-M, Mechoso CR, Wang G, Kucharski F, Schiro K, Hosaka M, Li S, Druyan LM, Sanda IS, Thiaw W, Zeng N, Comer RE, Lim Y-K, Mahanama S, Song G, Gu Y, Hagos SM, Chin M, Schubert S, Dirmeyer P, Ruby Leung L, Kalnay E, Kitoh A, Lu C-H, Mahowald NM, Zhang Z (2016a) West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Clim Dyn 47(11):3517–3545

    Article  Google Scholar 

  • Xue Y, Oaida CM, Diallo I, Neelin JD, Li S, De Sales F, Gu Y, Robinson DA, Vasic R, Yi L (2016b) Spring land temperature anomalies in northwestern US and the summer drought over Southern Plains and adjacent areas. Environ Res Lett 11(4):044018

    Article  Google Scholar 

  • Xue Y, Diallo I, Li W, David Neelin J, Chu PC, Vasic R, Guo W, Li Q, Robinson DA, Zhu Y, Fu C, Oaida CM (2018) Spring land surface and subsurface temperature anomalies and subsequent downstream late spring-summer droughts/floods in North America and East Asia. J Geophys Res Atmos 123(10):5001–5019

    Article  Google Scholar 

  • Xue Y, Boone A, Yao T (2019) Remote effects of high elevation land surface temperature on S2S precipitation prediction: first workshop on LS4P and TPEMIP. GEWEX News Quart Newsl

  • Xue Y, Yao T, Boone AA, Diallo I, Liu Y, Zeng X, Lau WKM, Sugimoto S, Tang Q, Pan X, van Oevelen PJ, Klocke D, Koo MS, Lin Z, Takaya Y, Sato T, Ardilouze C, Saha SK, Zhao M, Liang XZ, Vitart F, Li X, Zhao P, Neelin D, Guo W, Yu M, Qian Y, Shen SSP, Zhang Y, Yang K, Leung R, Yang J, Qiu Y, Brunke MA, Chou SC, Ek M, Fan T, Guan H, Lin H, Liang S, Materia S, Nakamura T, Qi X, Senan R, Shi C, Wang H, Wei H, Xie S, Xu H, Zhang H, Zhan Y, Li W, Shi X, Nobre P, Qin Y, Dozier J, Ferguson CR, Balsamo G, Bao Q, Feng J, Hong J, Hong S, Huang H, Ji D, Ji Z, Kang S, Lin Y, Liu W, Muncaster R, Pan Y, Peano D, de Rosnay P, Takahashi HG, Tang J, Wang G, Wang S, Wang W, Zhou X, Zhu Y (2021) Impact of initialized land surface temperature and snowpack on subseasonal to seasonal prediction project, phase i (ls4p-i): organization and experimental design. Geosci Model Dev Discuss 2021:1–58

    Google Scholar 

  • Yanai MH, Li CF, Song ZS (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70(1B):319–351

    Article  Google Scholar 

  • Yang K, Zhang J (2016) Spatiotemporal characteristics of soil temperature memory in China from observation. Theor Appl Climatol 126(3):739–749

    Article  Google Scholar 

  • Yang K, Chen Y-Y, Qin J (2009) Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci Hydrol 13(5):687–701

    Article  Google Scholar 

  • Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun YX, Ma Y, Shen SSP, Su Z, Chen F, Liang S, Liu Y, Singh VP, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q (2019) Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations. Model Anal Bull Am Meteorol Soc 100(3):423–444

    Article  Google Scholar 

  • Ye DZ (1981) some characteristics of the summer circulation over the qinghai-xizang (tibet) plateau and its neighborhood. Bull Am Meteorol Soc 62(1):14–19

    Article  Google Scholar 

  • Zeng X, Decker M (2009) Improving the numerical solution of soil moisture?Based richards equation for land models with a deep or shallow water table. J Hydrometeorol 10(1):308–319

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20020201), and the General Project of the National Natural Science Foundation of China (Grant 41875134). In addition, we thank two anonymous reviewers for their helpful comments.

Funding

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20020201), and the General Project of the National Natural Science Foundation of China (Grant 41875134).

Author information

Authors and Affiliations

Authors

Contributions

All the authors except ZX made substantial contributions to the conception or design of the work. YQ did analyses and drafted the work and others revised it. ZX contributed to the mechanism explaining in Sect. 4.

Corresponding author

Correspondence to Jinming Feng.

Ethics declarations

Conflict of interest

No conflicts of interest/competing interests.

Data availability

If necessary, the data and materials used in this study will be uploaded to a data center, like National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/).

Code availability

If necessary, the codes of analyzing and plotting in this study will be upload to github.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Feng, J., Wang, J. et al. Memory of land surface and subsurface temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models. Clim Dyn 62, 2703–2718 (2024). https://doi.org/10.1007/s00382-021-05937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05937-z

Keywords

Navigation