Skip to main content

Advertisement

Log in

A realistic Greenland ice sheet and surrounding glaciers and ice caps melting in a coupled climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Greenland ice sheet experienced an intensive melting in the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean could disrupt the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic Meridional Overturning Circulation (AMOC) have been reported. In order to better understand the possible impact of the increasing melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes spanning from 1840 to 2014. The estimate is based on runoff fluxes coming from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force a set of historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The ten-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is weakened by \(0.32 \pm 0.35\) Sv at \(26 ^\circ \) N. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is slightly closer to observations than in standard historical simulations, although the two trends are only different at the 90% confidence level. Slight improvement of the Root Mean Square Error with respect to observations in the subpolar gyre region suggests that part of the surface temperature variability over the recent decades may have been forced by the release of freshwater from Greenland and surrounding regions since the 1920s. Finally, we highlight that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very small amount of the \(3\pm 1\) Sv weakening suggested in a recent study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and material

Available on request.

Code availability

Available on request.

References

  • Arsouze T, Dutay JC, Lacan F, Jeandel C (2009) Reconstructing the Nd oceanic cycle using a coupled dynamical–biogeochemical model. Biogeosciences 6. https://doi.org/10.5194/bgd-6-5549-2009

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20(2). https://doi.org/10.1029/2005GB002591

  • Ayache M, Dutay JC, Arsouze T, Révillon S, Beuvier J, Jeandel C (2016) High-resolution neodymium characterization along the Mediterranean margins and modelling of \(\varepsilon _{Nd}\) distribution in the Mediterranean basins. Biogeosciences 13:5259–5276

    Article  Google Scholar 

  • Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 39(19). https://doi.org/10.1029/2012GL052552

  • Bamber JL, Tedstone AJ, King MD, Howat IM, Enderlin EM, van den Broeke MR, Noel B (2018) Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. J Geophys Res Oceans 123(3):1827–1837. https://doi.org/10.1002/2017JC013605

  • Böning CW, Behrens E, Biastoch A, Getzlaff K, Bamber JL (2016) Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat Geosci 9(7):523–527. https://doi.org/10.1038/ngeo2740

    Article  Google Scholar 

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, Bekki S, Bonnet R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Caubel A, Cheruy F, Codron F, Cozic A, Cugnet D, D’Andrea F, Davini P, de Lavergne C, Denvil S, Deshayes J, Devilliers M, Ducharne A, Dufresne JL, Dupont E, Éthé C, Fairhead L, Falletti L, Flavoni S, Foujols MA, Gardoll S, Gastineau G, Ghattas J, Grandpeix JY, Guenet B, Guez E Lionel, Guilyardi E, Guimberteau M, Hauglustaine D, Hourdin F, Idelkadi A, Joussaume S, Kageyama M, Khodri M, Krinner G, Lebas N, Levavasseur G, Lévy C, Li L, Lott F, Lurton T, Luyssaert S, Madec G, Madeleine JB, Maignan F, Marchand M, Marti O, Mellul L, Meurdesoif Y, Mignot J, Musat I, Ottlé C, Peylin P, Planton Y, Polcher J, Rio C, Rochetin N, Rousset C, Sepulchre P, Sima A, Swingedouw D, Thiéblemont R, Traore AK, Vancoppenolle M, Vial J, Vialard J, Viovy N, Vuichard N (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst 12(7):e2019MS002010. https://doi.org/10.1029/2019MS002010

  • Box JE, Colgan W (2013) Greenland ice sheet mass balance reconstruction. Part III: marine ice loss and total mass balance (1840–2010). J Clim 26(18):6990–7002. https://doi.org/10.1175/JCLI-D-12-00546.1

  • Buckley MW, Marshall J (2016) Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: a review. Rev Geophys 54(1):5–63. https://doi.org/10.1002/2015RG000493

    Article  Google Scholar 

  • Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V (2018) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:191–196. https://doi.org/10.1038/s41586-018-0006-5

    Article  Google Scholar 

  • Carmack EC, Yamamoto-Kawai M, Haine TWN, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML, Williams WJ (2016) Freshwater and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosci 121(3):675–717. https://doi.org/10.1002/2015JG003140

    Article  Google Scholar 

  • Cassou C, Kushnir Y, Hawkins E, Pirani A, Kucharski F, Kang IS, Caltabiano N (2018) Decadal climate variability and predictability: challenges and opportunities. Bull Am Meteorol Soc 99(3):479–490. https://doi.org/10.1175/BAMS-D-16-0286.1

    Article  Google Scholar 

  • Chylek P, Dubey MK, Lesins G (2006) Greenland warming of 1920–1930 and 1995–2005. Geophys Res Lett 33(11). https://doi.org/10.1029/2006GL026510

  • Collins M, Sutherland M, Bouwer L, S-M C, Frölicher T, Jacot Des Combes H, Koll Roxy M, Losada I, McInnes K, Ratter B, Rivera-Arriaga E, Susanto R, Swingedouw D, Tibig L (2019) Extremes, abrupt changes and managing risk. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Chapter 6

  • Drijfhout S (2015) Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci Rep 5:14877. https://doi.org/10.1038/srep14877

    Article  Google Scholar 

  • Drijfhout S, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25(24):8373–8379. https://doi.org/10.1175/JCLI-D-12-00490.1

    Article  Google Scholar 

  • Du Y, Zhang Y, Feng M, Wang T, Zhang N, Wijffels S (2015) Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci Rep 5:16050. https://doi.org/10.1038/srep16050

    Article  Google Scholar 

  • Dukhovskoy DS, Myers PG, Platov G, Timmermans ML, Curry B, Proshutinsky A, Bamber JL, Chassignet E, Hu X, Lee CM, Somavilla R (2016) Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers. J Geophys Res Oceans 121(1):877–907. https://doi.org/10.1002/2015JC011290

    Article  Google Scholar 

  • Dukhovskoy DS, Yashayaev I, Proshutinsky A, Bamber JL, Bashmachnikov IL, Chassignet EP, Lee CM, Tedstone AJ (2019) Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic. J Geophys Res Oceans 124(5):3333–3360. https://doi.org/10.1029/2018JC014686

    Article  Google Scholar 

  • Fettweis X, Box JE, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H, Gallée H (2017) Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11(2):1015–1033. https://doi.org/10.5194/tc-11-1015-2017

    Article  Google Scholar 

  • Friedman AR, Reverdin G, Khodri M, Gastineau G (2017) A new record of Atlantic sea surface salinity from 1896 to 2013 reveals the signatures of climate variability and long-term trends. Geophys Res Lett 44(4):1866–1876. https://doi.org/10.1002/2017GL072582

    Article  Google Scholar 

  • Gelderloos R, Straneo F, Katsman CA (2012) Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: lessons from the great salinity anomaly years 1968–71. J Clim 25(19):6743–6755. https://doi.org/10.1175/JCLI-D-11-00549.1

    Article  Google Scholar 

  • Gervais M, Shaman J, Kushnir Y (2018) Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J Clim 31(15):5927–5946. https://doi.org/10.1175/JCLI-D-17-0635.1

    Article  Google Scholar 

  • Gillard LC, Hu X, Myers PG, Bamber JL (2016) Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophys Res Lett 43(20):10,873–10,882. https://doi.org/10.1002/2016GL070969

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118(12):6704–6716. https://doi.org/10.1002/2013JC009067

    Article  Google Scholar 

  • Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne JL, Lahellec A, Lefebvre MP, Roehrig R (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40(9):2193–2222. https://doi.org/10.1007/s00382-012-1343-y

    Article  Google Scholar 

  • Hourdin F, Rio C, Grandpeix JY, Madeleine JB, Cheruy F, Rochetin N, Jam A, Musat I, Idelkadi A, Fairhead L, Foujols MA, Mellul L, Traore AK, Dufresne JL, Boucher O, Lefebvre MP, Millour E, Vignon E, Jouhaud J, Diallo FB, Lott F, Gastineau G, Caubel A, Meurdesoif Y, Ghattas J (2020) LMDZ6A: the atmospheric component of the IPSL climate model with improved and better tuned physics. J Adv Model Earth Syst 12(7):e2019MS001892. https://doi.org/10.1029/2019MS001892

  • Huang B, Thorne PW, Smith TM, Liu W, Lawrimore J, Banzon VF, Zhang HM, Peterson TC, Menne M (2016) Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J Clim 29(9):3119–3142. https://doi.org/10.1175/JCLI-D-15-0430.1

    Article  Google Scholar 

  • Jackson L, Kahana R, Graham T, Ringer M, Woollings T, Mecking J, Wood R (2015) Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dyn 45:1–18. https://doi.org/10.1007/s00382-015-2540-2

    Article  Google Scholar 

  • Jackson L, Peterson KA, Roberts CD, Wood R (2016) Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat Geosci 19:518–522

    Article  Google Scholar 

  • Jackson LC, Roberts MJ, Hewitt HT, Iovino D, Koenigk T, Meccia VL, Roberts CD, Ruprich-Robert Y, Wood RA (2020) Impact of ocean resolution and mean state on the rate of AMOC weakening. Clim Dyn 55:1711–1732. https://doi.org/10.1007/s00382-020-05345-9

    Article  Google Scholar 

  • Kostov Y, Armour KC, Marshall J (2014) Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys Res Lett 41(6):2108–2116

    Article  Google Scholar 

  • Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation. Geophys Res Lett 36(20). https://doi.org/10.1029/2009GL040938

  • Lenaerts JTM, Le Bars D, van Kampenhout L, Vizcaino M, Enderlin EM, van den Broeke MR (2015) Representing Greenland ice sheet freshwater fluxes in climate models. Geophys Res Lett 42(15):6373–6381. https://doi.org/10.1002/2015GL064738

    Article  Google Scholar 

  • Lurton T, Balkanski Y, Bastrikov V, Bekki S, Bopp L, Braconnot P, Brockmann P, Cadule P, Contoux C, Cozic A, Cugnet D, Dufresne JL, Éthé C, Foujols MA, Ghattas J, Hauglustaine D, Hu RM, Kageyama M, Khodri M, Lebas N, Levavasseur G, Marchand M, Ottlé C, Peylin P, Sima A, Szopa S, Thiéblemont R, Vuichard N, Boucher O (2020) Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J Adv Model Earth Syst 12(4):e2019MS001940. https://doi.org/10.1029/2019MS001940

  • Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619

  • Marsh R, Desbruyères D, Bamber JL, de Cuevas BA, Coward AC, Aksenov Y (2010) Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci 6(3):749–760. https://doi.org/10.5194/os-6-749-2010

    Article  Google Scholar 

  • Marsh R, Ivchenko VO, Skliris N, Alderson S, Bigg GR, Madec G, Blaker AT, Aksenov Y, Sinha B, Coward AC, Le Sommer J, Merino N, Zalesny VB (2015) NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution. Geosci Model Dev 8(5):1547–1562. https://doi.org/10.5194/gmd-8-1547-2015

  • Marshall J, Scott JR, Armour KC, Campin JM, Kelley M, Romanou A (2015) The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim Dyn 44(7–8):2287–2299. https://doi.org/10.1007/s00382-014-2308-0

    Article  Google Scholar 

  • Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix J, Guilyardi E, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34. https://doi.org/10.1007/S00382-009-0640-6

  • McCarthy G, Haigh I, Hirschi J, Grist J, Smeed D (2015a) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521:508

    Article  Google Scholar 

  • McCarthy G, Smeed D, Johns W, Frajka-Williams E, Moat B, Rayner D, Baringer M, Meinen C, Collins J, Bryden H (2015b) Measuring the Atlantic meridional overturning circulation at \(26 ^\circ \)N. Prog Oceanogr 130:91–111. https://doi.org/10.1016/j.pocean.2014.10.006

    Article  Google Scholar 

  • Menary MB, Hodson DLR, Robson JI, Sutton RT, Wood RA, Hunt JA (2015) Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys Res Lett 42(14):5926–5934. https://doi.org/10.1002/2015GL064360

    Article  Google Scholar 

  • Menary MB, Robson J, Allan RP, Booth BBB, Cassou C, Gastineau G, Gregory J, Hodson D, Jones C, Mignot J, Ringer M, Sutton R, Wilcox L, Zhang R (2020) Aerosol-forced amoc changes in cmip6 historical simulations. Geophys Res Lett 47(14):e2020GL088166. https://doi.org/10.1029/2020GL088166

  • Morlighem M, Williams CN, Rignot E, An L, Arndt JE, Bamber JL, Catania G, Chauché N, Dowdeswell JA, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan TM, Kjeldsen KK, Millan R, Mayer L, Mouginot J, Noël BPY, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert MJ, Slabon P, Straneo F, van den Broeke MR, Weinrebe W, Wood M, Zinglersen KB (2017) BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys Res Lett 44(21):11051–11061. https://doi.org/10.1002/2017GL074954

  • Noël B, van de Berg WJ, van Wessem JM, van Meijgaard E, van As D, Lenaerts JTM, Lhermitte S, Kuipers Munneke P, Smeets CJPP, van Ulft LH, van de Wal RSW, van den Broeke MR (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2, Part 1: Greenland (1958–2016). Cryosphere 12:811–831

    Article  Google Scholar 

  • Pardaens A, Vellinga M, Wu P, Ingleby B (2008) Large-scale Atlantic salinity changes over the last half-century: a model-observation comparison. J Clim 21(8):1698–1720. https://doi.org/10.1175/2007JCLI1988.1

    Article  Google Scholar 

  • Pörtner HO, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Tech. rep., IPCC: Summary for Policymakers

  • Radić V, Hock R (2014) Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv Geophys 35(3):813–837. https://doi.org/10.1007/s10712-013-9262-y

    Article  Google Scholar 

  • Rahmstorf S, Box J, Feulner G, Mann M, Robinson A, Rutherford S, Schaffernicht E (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5. https://doi.org/10.1038/nclimate2554

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14). https://doi.org/10.1029/2002JD002670

  • Reverdin G, Valdimarsson H, Alory G, Diverres D, Bringas F, Goni G, Heilmann L, Chafik L, Szekely T, Friedman AR (2018) North Atlantic subpolar gyre along predetermined ship tracks since 1993: a monthly data set of surface temperature, salinity, and density. Earth Syst Sci Data 10(3):1403–1415

    Article  Google Scholar 

  • Ribes A, Zwiers FW, Azaïs JM, Naveau P (2017) A new statistical approach to climate change detection and attribution. Clim Dyn 48:367–386. https://doi.org/10.1007/s00382-016-3079-6

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311(5763):986–990. https://doi.org/10.1126/science.1121381

    Article  Google Scholar 

  • Robson J, Ortega P, Sutton R (2016) A reversal of climatic trends in the North Atlantic since 2005. Nat Geosci 9:513

    Article  Google Scholar 

  • Romanou A, Marshall J, Kelley M, Scott J (2017) Role of the ocean’s AMOC in setting the uptake efficiency of transient tracers. Geophys Res Lett 44(11):5590–5598. https://doi.org/10.1002/2017GL072972

    Article  Google Scholar 

  • Rousset C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélemy A, Benshila R, Chanut J, Levy C, Masson S, Vivier F (2015) The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geosci Model Dev 8(10):2991–3005. https://doi.org/10.5194/gmd-8-2991-2015

  • Saenko OA, Yang D, Myers PG (2017) Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model. Clim Dyn 49:2895–2910. https://doi.org/10.1007/s00382-016-3495-7

    Article  Google Scholar 

  • Sánchez Goñi M, Bakker P, Desprat S, Carlson A, Van Meerbeeck C, Peyron O, Naughton F, Fletcher W, Eynaud F, Rossignol L, Renssen H (2012) European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology 40:627–630. https://doi.org/10.1130/G32908.1

    Article  Google Scholar 

  • Selyuzhenok V, Bashmachnikov I, Ricker R, Vesman A, Bobylev L (2020) Sea ice volume variability and water temperature in the Greenland Sea. Cryosphere 14(2):477–495. https://doi.org/10.5194/tc-14-477-2020. https://tc.copernicus.org/articles/14/477/2020/

  • Sgubin G, Swingedouw D, Drijfhout S, Mary Y, Bennabi A (2017) Abrupt cooling over the North Atlantic in modern climate models. Nat Commun 8(14375). https://doi.org/10.1038/ncomms14375

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. https://doi.org/10.1175/JCLI3689.1

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delécluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2xCO\(_2\) stabilization experiment with land-ice melting. Clim Dyn 29:521–534. https://doi.org/10.1007/s00382-007-0250-0

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22(23):6377–6403. https://doi.org/10.1175/2009JCLI3028.1

    Article  Google Scholar 

  • Swingedouw D, Rodehacke C, Behrens E, Menary M, Olsen S, Gao Y, Mikolajewicz U, Mignot J, Biastoch A (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41:695–720

    Article  Google Scholar 

  • Swingedouw D, Rodehacke CB, Olsen SM, Menary M, Gao YQ, Mikolajewicz U, Mignot J (2015) On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment. Clim Dyn 44:3261–3279. https://doi.org/10.1007/s00382-014-2270-x

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Thornalley DJR, Oppo DW, Ortega P, Robson JI, Brierley CM, Davis R, Hall IR, Moffa-Sanchez P, Rose NL, Spooner PT, Yashayaev I, Keigwin LD (2018) Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556:227–230. https://doi.org/10.1038/s41586-018-0007-4

    Article  Google Scholar 

  • Tournadre J, Bouhier N, Girard-Ardhuin F, Rémy F (2015) Antarctic icebergs distributions 1992–2014. J Geophys Res Oceans 121(1):327–349. https://doi.org/10.1002/2015JC011178

    Article  Google Scholar 

  • van den Broeke MR, Enderlin EM, Howat IM, Kuipers Munneke P, Noël BPY, van de Berg WJ, van Meijgaard E, Wouters B (2016) On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10(5):1933–1946. https://doi.org/10.5194/tc-10-1933-2016

    Article  Google Scholar 

  • Wunsch C (2002) What is the thermohaline circulation? Science 298(5596):1179–1181. https://doi.org/10.1126/science.1079329

    Article  Google Scholar 

  • Yang Q, Dixon TH, Myers PG, Bonin J, Chambers D, van den Broeke MR, Ribergaard MH, J M (2016) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat Commun 7(10525). https://doi.org/10.1038/ncomms10525

  • Yashayaev I, Loder J (2016) Further intensification of deep convection in the Labrador Sea in 2016: intensified 2016 Labrador Sea convection. Geophys Res Lett 44. https://doi.org/10.1002/2016GL071668

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35. https://doi.org/10.1029/2008GL035463

Download references

Acknowledgements

This work was granted access to the HPC resources of TGCC under the allocation No. 2016-017403. The authors thank the platform group users of the IPSL.

Funding

This research benefited from Blue-Action project: European Union’s Horizon 2020 research and innovation program, Grant Number 727852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Devilliers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 962 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devilliers, M., Swingedouw, D., Mignot, J. et al. A realistic Greenland ice sheet and surrounding glaciers and ice caps melting in a coupled climate model. Clim Dyn 57, 2467–2489 (2021). https://doi.org/10.1007/s00382-021-05816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05816-7

Keywords

Navigation