Abstract
The precipitation behaviour at different timescales (interannual, intraseasonal and synoptic) and extreme events in a warmer scenario over South America is analysed. This study is based on a set of Regional Climate Models (RCM) from the CORDEX database and their driving Global Climate Models (GCM) from the CMIP5 Project. Historical simulations for 1979–2005 and from the RCP4.5 scenario for 2071–2100 are used. The projected changes in the precipitation behaviour are evaluated in terms of the consistency between the pairs RCM-GCM aiming to explore the added value of RCMs. The agreement between projected changes from RCMs is also evaluated as a measure of confidence of the regional climate change signal. The analysis is carried out for two extended seasons (April to September and October to March). The projected change in the mean precipitation over subtropical latitudes is associated with both changes in the frequency of rainy days and in the intensity of extreme events, while for the tropics the changes are mainly associated with changes in the wet day frequency. The increase of extreme precipitation events over the subtropics arises as a robust signal among models, while for tropical latitudes the dispersion among models is high, which reduces the confidence of the projections. In general, the consistency of the projections in the pairs RCM-GCM and the agreement among models are higher for the low frequency variability patterns during winter, while for summertime a better agreement in the projected changes of the precipitation behaviour at different timescales among RCMs is found.
This is a preview of subscription content, access via your institution.











References
Aliaga VS, Ferrelli F, Alberdi Algañaraz ED, Bohn VY, Piccolo MC (2016) Distribución y variabilidad de la precipitación en la Región Pampeana, Argentina. Cuadernos de Investigación Geográfica 42:261–280. https://doi.org/10.18172/cig.2867
Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann. N.Y Acad Sci 1436:98–120. https://doi.org/10.1111/nyas.13932
Barrett BS (2012) Madden–Julian Oscillation (MJO) modulation of atmospheric circulation and chilean winter precipitation. J Clim 25:1678–1688. https://doi.org/10.1175/JCLI-D-11-00216.1
Blackshear T, Crocker T, Drucker E, Filoon J, Knelman J, Skiles M (2011) Hydropower vulnerability and climate change: a framework for modeling the future of global hydroelectric resources. Middlebury College. https://www.middlebury.edu/media/view/352071/original/
Blázquez J, Nuñez MN, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos Clim Sci 2:381–400. https://doi.org/10.4236/acs.2012.24034
Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41:1039–1056. https://doi.org/10.1007/s00382-012-1489
Cabré MF, Solman S, Núñez M (2016) Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 Model. Mean, interannual variability and uncertainties. Atmósfera 29:35–60. https://doi.org/10.20937/ATM.2016.29.01.04
Cavalcanti IFA, Silveira VP (2016) Changes in precipitation over the La Plata Basin, projected by CLARIS-LPB regional models. Clim Res 68:169–182. https://doi.org/10.3354/cr01388
Chou S, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Change 3:512–527. https://doi.org/10.4236/ajcc.2014.35043
Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model—HadGEM2 Geosci. Model Dev 4:1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Artic temperature variability: Canadian Earth System Model CanESM2. Atmos Chem Phys Discuss 11(8):22893–22907
Da Rocha RP, Reboita MS, Dutra LMM, Llopart M, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change 125:95–109. https://doi.org/10.1007/s10584-014-1119-y
De Oliveira CP, Ambrizzi T, Aimola L (2016) Influence of intraseasonal variability on precipitation in northern South America during the winter season. Int J Climatol 37:2177–2186. https://doi.org/10.1002/joc.4845
Di Luca A, Argüeso D, Evans JP, de Elía R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121:1575–1590. https://doi.org/10.1002/2015JD024009
Di Virgilio G, Evans JP, Di Luca A, Grose MR, Round V, Thatcher M (2020) Realised added value in dynamical downscaling of Australian climate change. Clim Dyn. https://doi.org/10.1007/s00382-020-05250-1
Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022. https://doi.org/10.1175/1520-0450
Falco M, Carril AF, Menéndez CG, Zaninelli P, Li L (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52:4771–4786. https://doi.org/10.1007/s00382-018-4412-z
Fantini A, Raffaele F, Torma C, Bacer S, Coppola E, Giorgi F, Ahrens B, Dubois C, Sanchez E, Verdecchia M (2018) Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn 51:877–900. https://doi.org/10.1007/s00382-016-3453-4
Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8:3053–3068. https://doi.org/10.5194/bg-8-3053-2011
Garreaud RD, Vuille M, Compagnucci R, Palaeogeography MJ (2009) Present-day South American climate. Palaeoclimatol Palaeoecol 281:180–195. https://doi.org/10.1016/j.palaeo.2007.10.032
Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018
Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490. https://doi.org/10.1146/annurev-environ-102014-021217
Giorgi F, Raffaele F, Coppola E (2019) The response of precipitation characteristics to global warming from climate projections. Earth Syst Dynam 10:73–89. https://doi.org/10.5194/esd-10-73-2019
Grimm AM, Natori AA (2006) Climate change and interannual variability of precipitation in South America. Geophys Res Lett 33:L19706. https://doi.org/10.1029/2006GL026821
Hawkins E, Sutton R (2011) The potential to narrow the uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. https://doi.org/10.1007/s00382-010-0810-6
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158:129–140. https://doi.org/10.1007/s00442-008-1116-9
Houze RA Jr (2004) Mesoscale convective systems. Rev Geophys 42:4003. https://doi.org/10.1029/2004RG000150
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp
Jacob D et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578. https://doi.org/10.1007/s10113-013-0499-2
Junquas C, Vera C, Li L, Le Treut H (2012) Summer precipitation variability over Southeastern South America in a global warming scenario. Clim Dyn 38:1867–1883. https://doi.org/10.1007/s00382-011-1141-y
Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J Geophys Res L 116:D06105. https://doi.org/10.1029/2010JD014920
Kyei-Mensah C, Kyerematen R, Adu-Acheampong S (2019) Impact of rainfall variability on crop production within the Worobong ecological area of Fanteakwa District, Ghana. Adv Agric 7930127:7. https://doi.org/10.1155/2019/7930127
Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. https://doi.org/10.14288/1.0376077
Li Y, Guan K, Schnitkey GD, DeLucia E, Peng B (2019) Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob Change Biol. https://doi.org/10.1111/gcb.14628
Liebmann B, Mechoso CR (2011) The South American Monsoon System. The global monsoon system. In: Chang C-P, Ding Y, Lau N-C (eds) The global monsoon system: research and forecast, 2nd edn. World Scientific Publication Company, Singapore
Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125:111–125. https://doi.org/10.1007/s10584-014-1140-1
Llopart M, Reboita MS, da Rocha RP (2019) Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn 54:99–116. https://doi.org/10.1007/s00382-019-04990-z
Lucas-Picher P, Laprise R, Winger K (2017) Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Clim Dyn 48:2611–2633. https://doi.org/10.1007/s00382-016-3227-z
Manzanas R, Gutiérrez JM, Fernández J, van Meijgaard E, Calmanti S, Magariño ME, Cofiño AS, Herrera S (2018) Dynamical and statistical downscaling of seasonal temperature forecasts in Europe. Clim Serv 9:44–56. https://doi.org/10.1016/j.cliser.2017.06.004
Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255. https://doi.org/10.1002/joc.1863
Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–1097. https://doi.org/10.1007/s00382-009-0721-6
Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Zhao WAJ, ZC, (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Mesinger F, Chou SC, Gomes JL, Jovic D, Bastos P, Bustamante JF, Lazić L, Lyra AA, Morelli S, Ristic IV, Veljović K (2012) An upgraded version of the Eta model. Meteorol Atmos Phys 116:63–79. https://doi.org/10.1007/s00703-012-0182-z
Meza I, Siebert S, Döll P, Kusche J, Herbert C, Eyshi Rezaei E, Nouri H, Gerdener H, Popat E, Frischen J, Naumann G, Vogt JV, Walz Y, Sebesvari Z, Hagenlocher M (2020) Global-scale drought risk assessment for agricultural systems. Nat Hazards Earth Syst Sci 20:695–712. https://doi.org/10.5194/nhess-20-695-2020
Nogués-Paegle J, Mo K (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291. https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO
Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM (2017) Precipitation variability increases in a warmer climate. Sci. Rep. UK 7:17966. https://doi.org/10.1038/s41598-017-17966-y
Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144:2351–2374. https://doi.org/10.1175/MWR-D-15-0058.1
Rasmussen KL, Chaplin MM, Zuluaga MD, Houze RA Jr (2016) Contribution of extreme convective storms to rainfall in South America. J Hydrometeorol 17:353–367. https://doi.org/10.1175/JHM-D-15-0067.1
Rummukainen M (2016) Added value in regional climate modelling. WIREs Clim Change 7:145–159. https://doi.org/10.1002/wcc.378
Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212. https://doi.org/10.1007/s00382-014-2466-0
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188
Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical Report. NCAR
Skansi MM, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Bentancur OJ et al (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004
Solman SA (2013) Regional climate modeling over South America: a review. Adv Meteorol. https://doi.org/10.1155/2013/504357
Solman SA, Orlanski I (2010) Subpolar high anomaly preconditioning precipitation over South America. J Atmos Sci 67; 5–2010; 1526–1542 https://hdl.handle.net/11336/17325
Solman SA, Blázquez J (2019) Multiscale precipitation variability over South America: analysis of the added value of CORDEX RCM simulations. Clim Dyn 53:1547–1565. https://doi.org/10.1007/s00382-019-04689-1
Sörenssön AA, Menéndez CG, Ruscica R, Alexander P, Samuelsson P, Willén U (2010) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19:347–355. https://doi.org/10.1127/0941-2948/2010/0467
Spinoni J, Barbosa P, Bucchignani E, Cassano J, Cavazos T, Christensen JH, Christensen OB, Coppola E, Evans J, Geyer B, Giorgi F, Hadjinicolaou P, Jacob D, Katzfey J, Koenigk T, Laprise R, Lennard CH, Levent Kurnaz M, Li D, Llopart M, McCormick N, Naumann G, Nikulin G, Ozturk T, Panitz H-J, Porfirio da Rocha R, Rockel B, Solman SA, Syktus J, Tangang F, Teichmann C, Vautard R, Vogt JV, Winger K, Zittis G, Dosio A (2020) Future global meteorological drought hotspots. A study based on CORDEX data. J Climate 33:3635–3663. https://doi.org/10.1175/JCLI-D-19-0084.1
Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader JJ, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Erath System Model: ECHAM6. J Adv Model Earth Syst 5(2):146–172
Sun Y, Solomon S, Dai A, Portmann RW (2007) How often will it rain? J Clim 20:4801–4818. https://doi.org/10.1175/JCLI4263.1
Vera CS, Alvarez MS, Gonzalez PLM, Liebmann B, Kiladis GN (2017) Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn 51:1991–2001. https://doi.org/10.1007/s00382-017-3994-1
Watanabe M, Suzuki T, Oishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1
Watterson IG, Bathols J, Heady C (2014) What influences the skill of climate models over the continents? Bull Am Meteorol Soc 95:689–700. https://doi.org/10.1175/BAMS-D-12-00136.1
Xie P, Yatagai A, Chen M, Hayasaka T, Fukushima Y, Liu C, Yang S (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626. https://doi.org/10.1175/JHM583.1
Acknowledgements
The authors acknowledge the WCRP-CMIP5 and CORDEX for making available the models outputs used in this work. This work was supported by UBACYT2018 Grant 20020170100117BA. The authors are grateful to two anonymous reviewers, whose comments and suggestions allowed improving the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Blázquez, J., Silvina, A.S. Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Clim Dyn 55, 2089–2106 (2020). https://doi.org/10.1007/s00382-020-05370-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-020-05370-8
Keywords
- Regional climate modeling
- South America
- Precipitation
- Future climate