Skip to main content

Advertisement

Log in

Assessment of multi-model climate projections of water resources over South America CORDEX domain

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Future climate projections focusing on precipitation and water resource trends over South America (SA) are investigated using two ensembles. One of them is composed of three global climate models (GCMs), and the other of eight regional climate models (RCMs) from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The present (1970–2005) and the future (2006–2100) climate trends are analyzed for representative pathway scenarios 4.5 (RCP4.5) and 8.5 (RCP8.5). For the most pessimistic scenario (RCP8.5), trends in water resources are assessed considering the terrestrial branch of the hydrologic cycle by analyzing the precipitation minus evapotranspiration (P-ET). For the present climate, RCMs added value to the GCMs in simulating more realistic precipitation fields in several regions. GCMs and RCMs project, in general, the same precipitation change signal for the end of the 21st century over SA, which is stronger in RCP8.5 than in RCP4.5. For RCP8.5 in most regions, GCMs and RCMs ensembles have the same precipitation trend signal, but a great spread between the ensemble members, which is greater in austral summer than winter, can be noted. In winter a negative trend in rainfall in most members and regions predominates. At the end of the 21st century, relative changes in rainfall in RCP8.5 are in the range of +14% (over northeastern Brazil in summer) to − 36% (over the Andes Mountains in winter). In RCP8.5, the ensembles project an increase in air temperature with a similar magnitude, while in RCP4.5 the trends are weaker. For air temperature, there is small spread between members, and the positive trend is statistically significant for all ensemble members in the RCP8.5 scenario. In terms of water resources, on an annual scale, for RCP8.5 the RCM ensemble projects a larger area with wetter conditions in the future than GCMs. Regionally, it is expected a decrease in water availability in the Amazon basin and an increase over northeast Brazil and southeast SA during the summer. In other regions (northern Amazon, the Andes Mountains and Patagonia) the ensembles indicate drier conditions in the future winter, except in southern Amazon. It is expected that such information could be useful for devising adaptation and mitigation policies due to climate change over the SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann NY Acad Sci 1436:98–120

    Google Scholar 

  • Artaxo P, Forsberg BR, Nagy L (2016) Amazonia in perspective as a changing environment. In: Nagy L, Forsberg B, Artaxo P (eds) Interactions between biosphere, atmosphere and human land use in the amazon basin. Ecological studies (analysis and synthesis), vol 227. Springer, Berlin

    Google Scholar 

  • Blásquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41:1039

    Google Scholar 

  • Bonan G (2015) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Boulanger JP, Carril AF, Sanchez E (2016) CLARIS-La Plata basin: regional hydroclimate variability, uncertainties and climate change scenarios. Clim Res 68:93–94

    Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6(6):1077–1089

    Google Scholar 

  • Carvalho LM, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108

    Google Scholar 

  • Chen M, Shi W, Xie P, Silva VB, Kousky VE, Higgins RW, Janowiak K (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113:D04110. https://doi.org/10.1029/2007JD009132

    Article  Google Scholar 

  • Chou S, Lyra A, Mourão C et al (2014) Evaluation of the eta simulations nested in three global climate models. Am J Clim Change 3:438–454

    Google Scholar 

  • Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Climatol 30:11–32

    Google Scholar 

  • Coronel G, Menendez A, Chamorro L (2002) Physiography and hydrology. In: Climate change in the La Plata Basin. Inter American Institute on Global Change, pp 44–59

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of amazonia. J Clim 13:18–34

    Google Scholar 

  • Cuya DGP, Brandimarte L, Popescu I, Alterach J, Peviani M (2013) A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes. Renew Energy 50:103–114

    Google Scholar 

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart MP, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change 125(1):95–109

    Google Scholar 

  • de Jesus EM, da Rocha RP, Reboita MS, Llopart M, Mosso Dutra LM, Remedio ARC (2016) Contribution of cold fronts to seasonal rainfall in simulations over the southern La Plata basin. Clim Res 68:243–255

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Socety 137(656):553–597

    Google Scholar 

  • Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15(23):3394–3410

    Google Scholar 

  • Drumond A, Marengo J, Ambrizzi T et al (2014) The role of the Amazon basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrol Earth Syst Sci 18(7):2577–2598

    Google Scholar 

  • Dunne JP, John JG, Adcroft AJ et al (2012) GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665

    Google Scholar 

  • Durán-Quesada AM, Reboita MS, Gimeno L (2012) Precipitation in tropical America and the associated sources of moisture: a short review. Hydrol Sci J 57(4):612–624

    Google Scholar 

  • Eltahir EA, Bras RL (1996) Precipitation recycling. Rev Geophys 34(3):367–378

    Google Scholar 

  • Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZ (2019) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Clim Dyn 52:4771

    Google Scholar 

  • Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34(5):647–670

    Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, HaakH, Hollweg H-D, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Müller W, Notz D, Raddatz T, Rast S, Roeckner E, Salzmann M, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2012) CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: the rcp85 experiment, served by ESGF. World Data Cent Clim. https://doi.org/10.1594/WDCC/CMIP5.MXELr8

    Article  Google Scholar 

  • Giorgi F (2010) Uncertainties in climate change projections, from the global to the regional scale, vol 9. EPJ Web of Conferences, pp 115–129

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Google Scholar 

  • Greve P, Seneviratne SI (2015) Assessment of future changes in water availability and aridity. Geophys Res Lett 42(13):5493–5499

    Google Scholar 

  • Gulizia Carla, Camilloni Inés (2015) Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int J Climatol 35:583–595

    Google Scholar 

  • Harris IPDJ, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 dataset. Int J Climatol 34(3):623–642

    Google Scholar 

  • IPCC (2013) Climate Change (2013): The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

  • Jacob D, Elizalde A, Haensler A et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125(1):111–125

    Google Scholar 

  • Llopart M, da Rocha RP, Reboita M, Cuadra S (2017) Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim Dyn 49(11–12):3975–3987

    Google Scholar 

  • Llopart M, Reboita MS, Coppola E, Giorgi F, da Rocha RP, de Souza DO (2018a) Land use change over the amazon forest and its impact on the local climate. Water 10(2):149

    Google Scholar 

  • Llopart MP, Reboita M, da Rocha R et al (2018b) Performance do Acoplamento RegCM4. 3 e CLM3. 5: Uma Análise Sobre o Sudeste do Brasil. Anuário do Instituto de Geociências 41:3. https://doi.org/10.11137/2018_3_113_124

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, da Rocha RP et al (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073

    Google Scholar 

  • Marengo JA, Tomasella J, Soares WR et al (2012) Extreme climatic events in the Amazon basin. Theor Appl Climatol 107:73

    Google Scholar 

  • Marengo JA, Alves LM, Torres RR (2016) Regional climate change scenarios in the Brazilian Pantanal watershed. Clim Res 68:201–213

    Google Scholar 

  • Marengo J, Torres R, Alves L (2017) Drought in Northeast Brazil-past, present, and future. Theoret Appl Climatol 129:1189–1200

    Google Scholar 

  • Meehl GA, Bony S (2011) Introduction to CMIP5. Clivar Exch 16(56):4–5

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JF, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Google Scholar 

  • Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface atmosphere interaction in the La Plata basin during summer: response to climate change. Clim Res 68(2–3):231–241

    Google Scholar 

  • Miles L, Grainger A, Phillips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747

    Google Scholar 

  • Nascimento M, Herdies DL, Oliveira de Souza D (2016) The South American water balance: the influence of low-level jets. J Clim 29(4):1429–1449

    Google Scholar 

  • Nuñez M, Blázquez J (2014) Climate change in La Plata basin as seen by a high-resolution global model. Atmos Clim Sci 4:272–289

    Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Reboita MS, Gan MA, da Rocha RP, Ambrizzi T (2010) Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia 25:n2

    Google Scholar 

  • Reboita MS, Fernandez JPR, Pereira Llopart M, Porfirio da Rocha R, Albertani Pampuch L, Cruz FT (2014a) Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim Res 60:215–234

    Google Scholar 

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014b) Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5. Adv Meteorol 2014:17

    Google Scholar 

  • Reboita MS, Dutra LMM, Dias CG (2016) Diurnal cycle of precipitation simulated by RegCM4 over South America: present and future scenarios. Clim Res 70:39–55

    Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38(6):2866–2879

    Google Scholar 

  • Rocha V, Correia F, da Silva PRT et al (2017) Reciclagem de Precipitação na Bacia Amazônica: O Papel do Transporte de Umidade e da Evapotranspiração da Superfície. Revista Brasileira de Meteorologia 32(3):387–398

    Google Scholar 

  • Rossetti DF, Valeriano MM (2007) Evolution of the lowest Amazon basin modeled from the integration of geological and SRTM topographic data. CATENA 70(2):253–265

    Google Scholar 

  • Ruscica RC, Menendez CG, Sörensson AA (2016) Land surface–atmosphere interaction in future South American climate using a multi-model ensemble. Atmos Sci Lett 17(2):141–147

    Google Scholar 

  • Samuelsson P, Jones CG, Willen U et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A Dyn Meteorol Oceanogr 63(1):4–23

    Google Scholar 

  • Samuelsson P, Gollvik S, Jansson C et al (2014) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). Report in Meteorology 157, SMHI, SE-601 76 Norrköping, Sweden

  • Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193

    Google Scholar 

  • Satyamurty P, da Costa CPW, Manzi AO (2013) Moisture source for the Amazon basin: a study of contrasting years. Theoret Appl Climatol 111(1–2):195–209

    Google Scholar 

  • Solman SA (2016) Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate projections. Clim Res 68(2–3):117–136

    Google Scholar 

  • Solman SA, Blázquez J (2019) Multiscale precipitation variability over South America: analysis of the added value of CORDEX RCM simulations. Clim Dyn 53:1547

    Google Scholar 

  • Solman SA, Sánchez E, Samuelsson P et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139

    Google Scholar 

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J Geophys Res Atmos 120:3957–3972

    Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999) (version 1.02). Center for Climte Research University of Delwark Newark, NJ, USA

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Google Scholar 

  • Zaninelli PG, Menéndez CG, Falco M, López-Franca N, Carril AF (2019) Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim Dyn 52:819

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank CMIP5 and CORDEX for the climate projections and the other institutes providing the data for this study. The study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil (Procs. 422042/2018-8; 420262/2018-0; 430314/2018-3 and 304949/2018-3). We thank the reviewers for their constructive and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Llopart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llopart, M., Simões Reboita, M. & Porfírio da Rocha, R. Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn 54, 99–116 (2020). https://doi.org/10.1007/s00382-019-04990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04990-z

Keywords

Navigation