Skip to main content

Advertisement

Log in

A convection-permitting model for the Lake Victoria Basin: evaluation and insight into the mesoscale versus synoptic atmospheric dynamics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Aiming for an improved understanding of the different factors that determine the regional climate of the Lake Victoria Basin, the COSMO-CLM regional climate model is set up in a tropical, convection-permitting configuration and is directly nested in a recent reanalysis product (ERA5). The convection-permitting simulation outperforms state-of-the-art climate integrations that rely on convection parametrisations. Yet the domain-averaged model precipitation is larger than in the multi-observational ensemble, but the latter shows large spread. Overestimations of outgoing TOA shortwave and longwave radiation are much reduced compared to the COSMO-CLM CORDEX-Africa integration, but still suggest a general underestimation of the cloud fraction or frequency. Comparing the control with a no-lake simulation, the presence of Lake Victoria implies strong intensification of over-lake rainfall, but it only slightly increases the total domain-averaged precipitation. In addition, the easterly trade winds are shown to largely affect the mesoscale circulation and precipitation patterns. During daytime, fast trades and anabatic slope winds trigger convection at the lee-wind slopes, and subsidence over the basin. Slow trades allow the stationary air to produce spontaneous convective cells and to develop anabatic winds that result in orographic precipitation. During night-time, trade winds curl around the eastern branch of the East African Rift, generating a southerly and northerly evening convergence front entering the Lake Victoria Basin. Thus, our results highlight the key importance of the easterly trade winds and the complex orography in determining the total accumulation and location of precipitation in the Lake Victoria region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anyah RO, Semazzi FHM, Xie L (2006) Simulated physical mechanisms associated with climate variability over lake Victoria Basin in East Africa. Mon Weather Rev 134(12):3588–3609. https://doi.org/10.1175/mwr3266.1

    Article  Google Scholar 

  • Bechtold P, Semane N, Lopez P, Chaboureau JP, Beljaars A, Bormann N (2014) Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci 71(2):734–753

    Article  Google Scholar 

  • Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AI, McVicar TR, Adler RF (2018) MSWEP V2 global 3-hourly 0.1deg precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc pp BAMS–D–17–0138.1, https://doi.org/10.1175/BAMS-D-17-0138.1,

    Article  Google Scholar 

  • Birch CE, Marsham JH, Parker DJ, Taylor CM (2014) The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys Res Lett 41(13):4769–4776

    Article  Google Scholar 

  • Brisson E, Van Weverberg K, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NPM (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn 47(9–10):3043–3061. https://doi.org/10.1007/s00382-016-3012-z

    Article  Google Scholar 

  • Broeckx J, Maertens M, Isabirye M, Vanmaercke M, Namazzi B, Deckers J, Tamale J, Jacobs L, Thiery W, Kervyn M, Vranken L, Poesen J (2018) Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides 16:571–584. https://doi.org/10.1007/s10346-018-1085-y

    Article  Google Scholar 

  • Brousse O, Georganos S, Demuzere M, Vanhuysse S, Wouters H, Wolff E, Linard C, van Lipzig NPM, Dujardin S (2019) Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Clim 27(November 2018):227–242. https://doi.org/10.1016/j.uclim.2018.12.004

    Article  Google Scholar 

  • Cardoso RM, Soares PM, Miranda PM, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33(11):2591–2608. https://doi.org/10.1002/joc.3616

    Article  Google Scholar 

  • Clerbaux N, Russell JE, Dewitte S, Bertrand C, Caprion D, De Paepe B, Gonzalez Sotelino L, Ipe A, Bantges R, Brindley HE (2009) Comparison of GERB instantaneous radiance and flux products with CERES Edition-2 data. Remote Sens Environ 113(1):102–114. https://doi.org/10.1016/j.rse.2008.08.016

    Article  Google Scholar 

  • Coe MT, Bonan GB (1997) Feedbacks between climate and surface water in northern Africa during the middle Holocene. J Geophys Res 102(97)

    Article  Google Scholar 

  • Copernicus Climate Change Services C (2017) ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Tech. rep., Copernicus Climate Change Service Climate Data Store (CDS)

  • Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, Ban N, Bastin S, Belda M, Belusic D, Caldas-Alvarez A, Cardoso RM, Davolio S, Dobler A, Fernandez J, Fita L, Fumiere Q, Giorgi F, Goergen K, Güttler I, Halenka T, Heinzeller D, Hodnebrog Jacob D, Kartsios S, Katragkou E, Kendon E, Khodayar S, Kunstmann H, Knist S, Lavín-Gullón A, Lind P, Lorenz T, Maraun D, Marelle L, van Meijgaard E, Milovac J, Myhre G, Panitz HJ, Piazza M, Raffa M, Raub T, Rockel B, Schär C, Sieck K, Soares PM, Somot S, Srnec L, Stocchi P, Tölle MH, Truhetz H, Vautard R, de Vries H, Warrach-Sagi K (2018) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics 689: https://doi.org/10.1007/s00382-018-4521-8

  • Derin Y, Yilmaz KK (2014) Evaluation of multiple satellite-based precipitation products over complex topography. J Hydrometeorol 15(4):1498–1516

    Article  Google Scholar 

  • Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor S, Ropelewski C (2007) Validation of satellite rainfall products over east africa’s complex topography. Int J Remote Sens 28(7):1503–1526

    Article  Google Scholar 

  • Dinku T, Connor SJ, Ceccato P, Ropelewski CF (2008) Comparison of global gridded precipitation products over a mountainous region of africa. Int J Climatol J R Meteorol Soc 28(12):1627–1638

    Article  Google Scholar 

  • Dirmeyer PA, Cash BA, Kinter JL, Jung T, Marx L, Satoh M, Stan C, Tomita H, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Huang B, Jin EK, Manganello J (2012) Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Clim Dyn 39(1–2):399–418. https://doi.org/10.1007/s00382-011-1127-9

    Article  Google Scholar 

  • Docquier D, Thiery W, Lhermitte S, van Lipzig N (2016) Multi-year wind dynamics around Lake Tanganyika. Clim Dyn 47(9–10):3191–3202. https://doi.org/10.1007/s00382-016-3020-z

    Article  Google Scholar 

  • Doms G, Baldauf M (2015) A Description of the Nonhydrostatic Regional COSMO-Model, Part I: Dynamics and Numerics. Tech. rep., Deutscher Wetterdienst, http://www.cosmo-model.org/

  • Dosio A, Panitz HJ (2016) Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim Dyn 46(5–6):1599–1625. https://doi.org/10.1007/s00382-015-2664-4

    Article  Google Scholar 

  • Finney DL, Marsham JH, Jackson LS, Kendon EJ, Rowell DP, Boorman PM, Keane RJ, Stratton RA, Senior CA (2019a) Implications of improved representation of convection for the East Africa water budget using a convection-permitting model. J Clim. https://doi.org/10.1175/jcli-d-18-0387.1

    Article  Google Scholar 

  • Finney DL, Marsham JH, Walker DP, Birch CE, Woodhams BJ, Jackson LS, Hardy S (2019b) The effect of westerlies on east african rainfall and the associated role of tropical cyclones and the madden–julian oscillation. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3698

    Article  Google Scholar 

  • Fraedrich K (1972) A simple climatological model of the dynamics and energetics of the nocturnal circulation at Lake Victoria. Q J R Meteorol Soc 98:322–335. https://doi.org/10.1002/qj.49709841606

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  • Gebremichael M, Bitew MM, Hirpa FA, Tesfay GN (2014) Accuracy of satellite rainfall estimates in the blue nile basin: lowland plain versus highland mountain. Water Resour Res 50(11):8775–8790

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58(3):175–183. https://doi.org/10.1109/ICASSP.2009.4960141

    Article  Google Scholar 

  • Harries JE, Russell JE, Hanafin JA, Brindley H, Futyan J, Rufus J, Kellock S, Matthews G, Wrigley R, Last A, Mueller J, Mossavati R, Ashmall J, Sawyer E, Parker D, Caldwell M, Allan PM, Smith A, Bates MJ, Coan B, Stewart BC, Lepine DR, Cornwall LA, Corney DR, Ricketts MJ, Drummond D, Smart D, Cutler R, Dewitte S, Clerbaux N, Gonzalez L, Ipe A, Bertrand C, Joukoff A, Crommelynck D, Nelms N, Llewellyn-Jones DT, Butcher G, Smith GL, Szewczyk ZP, Mlynczak PE, Slingo A, Allan RP, Ringer MA (2005) The geostationary earth radiation budget project. Bull Am Meteorol Soc 86(7):945–960. https://doi.org/10.1175/BAMS-86-7-945

    Article  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Change 3(9):816–821. https://doi.org/10.1038/nclimate1911

    Article  Google Scholar 

  • Jacobs L, Dewitte O, Poesen J, Delvaux D, Thiery W, Kervyn M (2016a) The Rwenzori Mountains, a landslide-prone region? Landslides 13(3):519–536. https://doi.org/10.1007/s10346-015-0582-5

    Article  Google Scholar 

  • Jacobs L, Dewitte O, Poesen J, Sekajugo J, Nobile A, Rossi M, Thiery W, Kervyn M (2018) Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Nat Hazards Earth Syst Sci 18(1):105–124. https://doi.org/10.5194/nhess-18-105-2018

    Article  Google Scholar 

  • Jacobs L, Maes J, Mertens K, Sekajugo J, Thiery W, van Lipzig NPM, Poesen J, Kervyn M, Dewitte O (2016b) Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Nat Hazards 84(2):851–876. https://doi.org/10.1007/s11069-016-2458-y

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of HydrometeorologyJournal of Hydrometeorology 5(June):487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, https://journals.ametsoc.org/doi/pdf/10.1175/1525-7541%282004%29005%3C0487%3ACAMTPG%3E2.0.CO%3B2

    Article  Google Scholar 

  • Kendon EJ, Stratton RA, Tucker S, Marsham JH, Berthou S, Rowell DP, Senior CA (2019) Enhanced future changes in wet and dry extremes over africa at convection-permitting scale. Nat Commun 10(1):1794

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteorol Monogr 10(32):88

    Google Scholar 

  • Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21(11):2680–2696

    Article  Google Scholar 

  • Kirshbaum DJ, Adler B, Kalthoff N, Barthlott C, Serafin S (2018) Moist orographic convection: physical mechanisms and links to surface-exchange processes. Atmosphere 9(3):80

    Article  Google Scholar 

  • Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol Z 19(1):11–23. https://doi.org/10.1127/0941-2948/2010/0424

    Article  Google Scholar 

  • Kothe S, Panitz HJ, Ahrens B (2014) Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa. Meteorol Z 23(2):123–141. https://doi.org/10.1127/0941-2948/2014/0527

    Article  Google Scholar 

  • Kotir JH (2011) Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environ Dev Sustain 13(3):587–605. https://doi.org/10.1007/s10668-010-9278-0

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang A, Stocker E, Adler R, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Juffman G, Ferrier B, Olson W, Zipser E, Smith E, Wilheit T, North G, Krishnamurti T, Nakamura K (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Am Meteorol Soc 39:1965–1982

    Google Scholar 

  • Li L, Hong Y, Wang J, Adler RF, Policelli FS, Habib S, Irwn D, Korme T, Okello L (2009) Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat Hazards 50(1):109–123. https://doi.org/10.1007/s11069-008-9324-5

    Article  Google Scholar 

  • Lwasa S (2010) Adapting urban areas in Africa to climate change: the case of Kampala. Curr Opin Environ Sustain 2(3):166–171. https://doi.org/10.1016/j.cosust.2010.06.009

    Article  Google Scholar 

  • MacCallum SN, Merchant CJ (2012) Surface water temperature observations of large lakes by optimal estimation. Can J Remote Sens 38(1):25–45. https://doi.org/10.5589/m12-010

    Article  Google Scholar 

  • Maidment RI, Grimes D, Black E, Tarnavsky E, Young M, Greatrex H, Allan RP, Stein T, Nkonde E, Senkunda S, Alcántara EMU (2017) A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Scientific data 4(170):082. https://doi.org/10.1038/sdata.2017.82, https://doi.org/10.1038/sdata.2017.63

  • Marsham JH, Dixon NS, Garcia-Carreras L, Lister GM, Parker DJ, Knippertz P, Birch CE (2013) The role of moist convection in the West African monsoon system: insights from continental-scale convection-permitting simulations. Geophys Res Lett 40(9):1843–1849. https://doi.org/10.1002/grl.50347

    Article  Google Scholar 

  • Meredith EP, Maraun D, Semenov VA, Park W (2016) Evidence for added value of convection-permitting models for studying changes in extreme precipitation. J Geophys Res Atmos pp 6472–6488, https://doi.org/10.1002/2015JD023257.Received

  • Mironov D, Heise E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A (2010) Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ Res 15(2):218–230

    Google Scholar 

  • Mironov D, Raschendorfer M (2001) Evaluation of Empirical Parameters of the New LM Surface-Layer Parameterization Scheme. Tech. Rep. 1, Deutscher Wetterdienst, http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport01.pdf

  • Monsieurs E, Dewitte O, Demoulin A (2019) A susceptibility-based rainfall threshold approach for landslide occurrence. Nat Hazards Earth Syst Sci 19(4):775–789. https://doi.org/10.5194/nhess-19-775-2019

    Article  Google Scholar 

  • Monsieurs E, Jacobs L, Michellier C, Basimike Tchangaboba J, Ganza GB, Kervyn F, Maki Mateso JC, Mugaruka Bibentyo T, Kalikone Buzera C, Nahimana L, Ndayisenga A, Nkurunziza P, Thiery W, Demoulin A, Kervyn M, Dewitte O (2018a) Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment. Landslides 15(11):2195–2209. https://doi.org/10.1007/s10346-018-1008-y

    Article  Google Scholar 

  • Monsieurs E, Kirschbaum DB, Tan J, Maki Mateso JC, Jacobs L, Plisnier PD, Thiery W, Umutoni A, Musoni D, Bibentyo TM et al (2018b) Evaluating tmpa rainfall over the sparsely gauged east african rift. J Hydrometeorol 19(9):1507–1528

    Article  Google Scholar 

  • Mukabana JR, Piekle RA (1996) Investigating the influence of synoptic-scale monsoonal winds and mesoscale circulations on diurnal weather patterns over Kenya using a mesoscale numerical model. Mon Weather Rev 124(2):224–244. https://doi.org/10.1175/1520-0493(1996)124<0224:itioss>2.0.co;2

    Article  Google Scholar 

  • Negri AJ, Xu L, Adler R (2002) A trmm-calibrated infrared rainfall algorithm applied over brazil. J Geophys Res Atmos D107(20):LBA–15

    Google Scholar 

  • Nicholson S (1996) A review of climate dynamics and climate variability in Eastern Africa. Limnol Climatol Paleoclimatol East Afr Lakes pp 25–56

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cereso-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, Van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. https://doi.org/10.1175/jcli-d-11-00375.1

    Article  Google Scholar 

  • Ongoma V, Chen H, Ongoma V, Gao C (2018) Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theoret Appl Climatol 135:893–910. https://doi.org/10.1007/s00704-018-2392-x

    Article  Google Scholar 

  • Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: Analysis of the ERA-Interim driven simulations at 0.44deg and 0.22deg resolution. Clim Dyn 42(11-12):3015–3038, https://doi.org/10.1007/s00382-013-1834-5

    Article  Google Scholar 

  • Pfeifroth U, Trentmann J, Fink AH, Ahrens B (2016) Evaluating satellite-based diurnal cycles of precipitation in the african tropics. J Appl Meteorol Climatol 55(1):23–39

    Article  Google Scholar 

  • Prein AF, Gobiet A, Suklitsch M, Truhetz H, Awan NK, Keuler K, Georgievski G (2013) Added value of convection permitting seasonal simulations. Clim Dyn 41(9–10):2655–2677. https://doi.org/10.1007/s00382-013-1744-6

    Article  Google Scholar 

  • Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361. https://doi.org/10.1002/2014rg000475

    Article  Google Scholar 

  • Ritter B, Geleyn JF (1991) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Am Meteorol Soc 12:303–325

    Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. https://doi.org/10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Rowell DP, Booth BB, Nicholson SE, Good P (2015) Reconciling past and future rainfall trends over East Africa. J Clim 28(24):9768–9788. https://doi.org/10.1175/JCLI-D-15-0140.1

    Article  Google Scholar 

  • Segele ZT, Leslie LM, Lamb PJ (2009) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29(January):47–65. https://doi.org/10.1002/joc.1681

    Article  Google Scholar 

  • Seifert A, Beheng KD (2001) A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos Res 59–60:265–281. https://doi.org/10.1016/S0169-8095(01)00126-0

    Article  Google Scholar 

  • Seifert A, Beheng KD (2006a) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol Atmos Phys 92(1–2):45–66. https://doi.org/10.1007/s00703-005-0112-4

    Article  Google Scholar 

  • Seifert A, Beheng KD (2006b) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: maritime vs. continental deep convective storms. Meteorol Atmos Phys 92(1–2):67–82. https://doi.org/10.1007/s00703-005-0113-3

    Article  Google Scholar 

  • Semazzi F (2011) Enhancing safety of navigation and efficient exploitation of natural resources over Lake Victoria and its basin by strengthening meteorological services on the lake. Tech. rep., North Carolina State University Climate Modeling Laboratory

  • Song Y, Semazzi FH, Xie L, Ogallo LJ (2004) A coupled regional climate model for the Lake Victoria Basin of East Africa. Int J Climatol 24(1):57–75. https://doi.org/10.1002/joc.983

    Article  Google Scholar 

  • Souverijns N, Thiery W, Demuzere M, Lipzig NP (2016) Drivers of future changes in East African precipitation. Environ Res Lett 11(11), https://doi.org/10.1088/1748-9326/11/11/114011

    Article  Google Scholar 

  • Stratton RA, Senior CA, Vosper SB, Folwell SS, Boutle IA, Earnshaw PD, Kendon E, Lock AP, Malcolm A, Manners J, Morcrette CJ, Short C, Stirling AJ, Taylor CM, Tucker S, Webster S, Wilkinson JM (2018) A Pan-African convection-permitting regional climate simulation with the met office unified model: CP4-Africa. J Clim 31(9):3485–3508. https://doi.org/10.1175/JCLI-D-17-0503.1

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107

    Article  Google Scholar 

  • Thiery W, Davin EL, Panitz HJ, Demuzere M, Lhermitte S, Van Lipzig NPM (2015) The impact of the African Great Lakes on the regional climate. J Clim 28(10):4061–4085. https://doi.org/10.1175/JCLI-D-14-00565.1

    Article  Google Scholar 

  • Thiery W, Davin EL, Seneviratne SI, Bedka K, Lhermitte S, Van Lipzig NP (2016) Hazardous thunderstorm intensification over Lake Victoria. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms12786

    Article  Google Scholar 

  • Thiery W, Martynov A, Darchambeau F, Descy JP, Plisnier PD, Sushama L, Van Lipzig NP (2014a) Understanding the performance of the FLake model over two African Great Lakes. Geosci Model Dev 7(1):317–337. https://doi.org/10.5194/gmd-7-317-2014

    Article  Google Scholar 

  • Thiery W, Stepanenko VM, Fang X, Jöhnk KD, Li Z, Martynov A, Perroud M, Subin ZM, Darchambeau F, Mironov D, Van Lipzig NPM (2014b) LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus Ser Dyn Meteorol Oceanogr 66(1):1–18. https://doi.org/10.3402/tellusa.v66.21390

    Article  Google Scholar 

  • Thiery W, Gudmundsson L, Bedka K, Semazzi FHM, Lhermitte S, Willems P, van Lipzig NPM, Seneviratne SI (2017) Early warnings of hazardous thunderstorms over Lake Victoria. Environ Res Lett 12(7):74,012, http://stacks.iop.org/1748-9326/12/i=7/a=074012

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Am Meteorol Soc 117:1779–1800

    Google Scholar 

  • Urbain M, Clerbaux N, Ipe A, Tornow F, Hollmann R, Baudrez E, Blazquez AV, Moreels J (2017) The CM SAF TOA radiation data record using MVIRI and SEVIRI. Remote Sens 9(5):1–31. https://doi.org/10.3390/rs9050466

    Article  Google Scholar 

  • Ushio T, Sasahiges K, Kubota T, Shige S, Okamoto K, Aonashi K, Inoue T, Takahashi N, Iguchi T, Kachi M, Oki R, Morimoto T, Kawasaki ZI (2009) A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J Meteorol Soc Jpn 87A(June 2008):137–151, https://doi.org/10.2151/jmsj.87A.137, http://joi.jlc.jst.go.jp/JST.JSTAGE/jmsj/87A.137?from=CrossRef

    Article  Google Scholar 

  • Van Lipzig N, King J, Lachlan-Cope T, Van den Broeke M (2004) Precipitation, sublimation, and snow drift in the antarctic peninsula region from a regional atmospheric model. J Geophys Res Atmos 109(D24)

  • Vanden Broucke S, Wouters H, Demuzere M, van Lipzig NPM (2018) The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: dependency on topography and timescale. Clim Dyn. https://doi.org/10.1007/s00382-018-4454-2

    Article  Google Scholar 

  • Vanderkelen I, van Lipzig NPM, Thiery W (2018a) Modelling the water balance of Lake Victoria (East Africa)—Part 1: observational analysis. Hydrol Earth Syst Sci 22(22):5509–5525. https://doi.org/10.5194/hess-22-5509-2018

    Article  Google Scholar 

  • Vanderkelen I, van Lipzig NPM, Thiery W (2018b) Modelling the water balance of Lake Victoria (East Africa)—Part 2: future projections. Hydrol Earth Syst Sci 22(10):5527–5549. https://doi.org/10.5194/hess-22-5527-2018

    Article  Google Scholar 

  • Watkins K (2006) Human Development Report: Beyond scarcity, power, poverty and the global water crisis. Tech. rep., United Nations Development Programme, http://hdr.undp.org/sites/default/files/reports/267/hdr06-complete.pdf

  • Van Weverberg K, Goudenhoofdt E, Blahak U, Brisson E, Demuzere M, Marbaix P, van Ypersele JP (2014) Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos Res 147–148:145–161. https://doi.org/10.1016/j.atmosres.2014.05.012

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  • Wielicki BA, BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE, (1996) Clouds and the Earth’s Radiant Energy System (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868

    Article  Google Scholar 

  • Woodhams BJ, Birch CE, Marsham JH, Bain CL, Roberts NM, Boyd DF (2018) What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical east africa? Mon Weather Rev 146(9):2757–2780

    Article  Google Scholar 

  • Woodhams BJ, Birch CE, Marsham JH, Lane TP, Bain CL, Webster S (2019) Identifying key controls on storm formation over the lake victoria basin. Mon Weather Rev 147(9):3365–3390

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by internal KU Leuven C1 project foundation and BELSPO through the research project REACT. The authors would like to thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the ERA5 reanalysis data. We would also like to express our gratitude to the COSMO-CLM community (http://www.clm-community.eu) for their efforts in both providing the model source code and helping to post-process ERA5 data. The computational resources and services used in this work were enabled by the VSC (Flemish Supercomputing Center). We also thank the reviewers for their positive feedback to and critical analysis of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Van de Walle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF1023 kb)

Supplementary material 2 (MP4 622 kb)

Supplementary material 3 (MP4 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Walle, J., Thiery, W., Brousse, O. et al. A convection-permitting model for the Lake Victoria Basin: evaluation and insight into the mesoscale versus synoptic atmospheric dynamics. Clim Dyn 54, 1779–1799 (2020). https://doi.org/10.1007/s00382-019-05088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05088-2

Keywords

Navigation