Skip to main content

Advertisement

Log in

COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We present the results of the application of the COSMO-CLM Regional Climate Model (CCLM) over the CORDEX-Africa domain. Two simulations were performed driven by the ERA-Interim reanalysis (1989–2008): the first one with the standard CORDEX spatial resolution (0.44°), and the second one with an unprecedented high resolution (0.22°). Low-level circulation and its vertical structure, the geographical and temporal evolution of temperature and precipitation are critically evaluated, together with the radiation budget and surface energy fluxes. CCLM is generally able to reproduce the overall features of the African climate, although some deficiencies are evident. Flow circulation is generally well simulated, but an excessive pressure gradient is present between the Gulf of Guinea and the Sahara, related to a marked warm bias over the Sahara and a cold bias over southern Sahel. CCLM underestimates the rainfall peak in the regions affected by the passage of the monsoon. This dry bias may be a consequence of two factors, the misplacement of the monsoon centre and the underestimation of its intensity. The former is related to the northern shift of the West African Heat Low. On the other hand, the underestimation of precipitation intensity may be related to the underestimation of the surface short-wave radiation and latent heat flux. The increase of the model resolution does not bring evident improvements to the results for monthly means statistics. As a result, it appears that 0.44° is a suitable compromise between model performances and computational constrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using RegCM3. Part II: impacts of deforestation and desertification. Theor Appl Climatol 93:245–261. doi:10.1007/s00704-007-0333-1

    Article  Google Scholar 

  • Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Elkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86:23–37. doi:10.1007/s00704-005-0202-8

    Article  Google Scholar 

  • Arakawa V, Lamb V (1977) Computational design of the basic dynamical processes in the UCLA general circulation model. In: Chang J (ed) Methods in computational physics: general circulation models of the atmosphere, vol 17. Academic Press, New York, pp 173–265. ISBN 0-12-460817-5

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905. doi:10.1175/MWR-D-10-05013.1

    Article  Google Scholar 

  • Boone AA, Poccard-Leclercq I, Xue Y, Feng J, Rosnay P (2009) Evaluation of the WAMME model surface fluxes using results from the MMA land-surface model intercomparison project. Clim Dyn 35(1):127–142. doi:10.1007/s00382-009-0653-1

    Article  Google Scholar 

  • Cook K (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184

    Article  Google Scholar 

  • D’ Amato N, Lebel T (1998) On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability. Int J Clim 18(9):955–974. doi:10.1002/(SICI)1097-0088(199807)18:9<955::AID-JOC236>3.0.CO;2-6

    Article  Google Scholar 

  • Davies H (1983) Limitations of some common lateral boundary schemes used in regional NWP models. Mon Weather Rev 111:1002–1012. doi:10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102(432):405–418. doi:10.1002/qj.49710243210

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dirmeyer Pa, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87(10):1381–1397. doi:10.1175/BAMS-87-10-1381

    Article  Google Scholar 

  • Domínguez M, Gaertner Ma, Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35(1):249–265. doi:10.1007/s00382-010-0769-3

    Article  Google Scholar 

  • Doms G (2011) A description of the nonhydrostatic regional COSMO model part 1: dynamics and numerics. DWD, Offenbach, Germany. http://www.cosmo-model.org/content/model/documentation/core/default.htm

  • Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konaré A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35(1):175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • D’ Orgeval T, Polcher J, Li L (2005) Uncertainties in modelling future hydrological change over West Africa. Clim Dyn 26(1):93–108. doi:10.1007/s00382-005-0079-3

    Article  Google Scholar 

  • Fu Q, Liou K, Cribb M, Charlock T, Grossman A (1997) Multiple scattering parameterization in thermal infrared radiative transfer. J Atmos Sci 54:2799–2812

    Article  Google Scholar 

  • Funk C, Verdin J (2010) Satellite rainfall applications for surface hydrology. Springer, Dordrecht. doi:10.1007/978-90-481-2915-7

    Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(July):175–183

    Google Scholar 

  • Gupta SK, Darnell WL, Wilber AC (1992) A parameterization for longwave surface radiation from satellite data: recent improvements. J Appl Meteorol 31(12):1361–1367. doi:10.1175/1520-0450(1992)031<1361:APFLSR>2.0.CO;2

    Article  Google Scholar 

  • Heise E, Lange M, Ritter B, Schrodin R (2003) Improvement and validation of the multilayer soil model. COSMO Newsl 3:198–203. http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm

  • Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2012) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn. doi:10.1007/s00382-012-1387-z

  • Huffman G, Adler R, Morrissey M, Bolvin D, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36(17):L17,808

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32. doi:10.1029/2005GL024225

  • Joyce R, Janowiak J, Arkin P, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  • Kaspar F, Cubasch U (2008) Simulation of East African precipitation patterns with the regional climate model CLM. Meteorologische Zeitschrift 17(4):511–517. doi:10.1127/0941-2948/2008/0299

    Article  Google Scholar 

  • Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res 115(D23). doi:10.1029/2010JD014331

  • Krähenmann S, Kothe S, Panitz H-J, Ahrens B (2012) Evaluation of daily maximum and minimum 2 m temperatures as simulated with the regional climate model COSMO-CLM over Africa. submitted to?

  • Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33(2–3):313–330. doi:10.1007/s00382-009-0553-4

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112(G1):G01,023

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10(2):111–127. doi:10.1002/joc.3370100202

    Article  Google Scholar 

  • Li H, Wang H, Yin Y (2012) Interdecadal variation of the West African summer monsoon during 19792010 and associated variability. Clim Dyn. doi:10.1007/s00382-012-1426-9

  • Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Q J R Meteorol Soc 123(537):101–127. doi:10.1002/qj.49712353704

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi:10.1029/RG020i004p00851

    Article  Google Scholar 

  • Mironov D, Raschendorfer M (2001) Evaluation of empirical parameters of the new LM surface-layer parameterization Scheme: results from numerical experiments including soil moisture analysis. Cosmo technical report 1, DWD, Offenbach, Germany. http://www.cosmo-model.org/content/model/documentation/techReports/default.htm

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Nicholson SE (2008) The intensity, location and structure of the tropical rainbelt over west Africa as factors in interannual variability. Int J Climatol 28(13):1775–1785. doi:10.1002/joc.1507

    Article  Google Scholar 

  • Nicholson SE (2009) A revised picture of the structure of the monsoon and land ITCZ over West Africa. Clim Dyn 32(7–8):1155–1171. doi:10.1007/s00382-008-0514-3

    Article  Google Scholar 

  • Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OBs, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim. doi:10.1175/JCLI-D-11-00375.1

  • Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Fink AH, Gosset M, Lebel T, Gaye AT, Rowell DP, Moufouma-Okia W, Jacob D, Rockel B, Giorgi F, Rummukainen M (2011) Progress in regional downscaling of west African precipitation. Atmos Sci Lett 12(1):75–82. doi:10.1002/asl.306

    Article  Google Scholar 

  • Parker DJ, Thorncroft CD, Burton RR, Diongue-Niang A (2005) Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Q J R Meteorol Soc 131(608):1461–1482. doi:10.1256/qj.03.189

    Article  Google Scholar 

  • Philippon N, Fontaine B (2002) The relationship between the Sahelian and previous 2nd Guinean rainy seasons: a monsoon regulation by soil wetness? Ann Geophys 20(4):575–582. doi:10.5194/angeo-20-575-2002

    Article  Google Scholar 

  • Pinker RT, Laszlo I (1992) Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31(2):194–211. doi:10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2

    Article  Google Scholar 

  • Pinker RT, Zhao Y, Akoshile C, Janowiak J, Arkin P (2006) Diurnal and seasonal variability of rainfall in the sub-Sahel as seen from observations, satellites and a numerical model. Geophys Res Lett 33(7):2–5. doi:10.1029/2005GL025192

    Google Scholar 

  • Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsl 1:90–98. http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm

  • Reason CJC, Rouault M (2005) Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys Res Lett 32(7):L07,705. doi:10.1029/2005GL022419

    Google Scholar 

  • Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87(12):1739–1746. doi:10.1175/BAMS-87-12-1739

    Article  Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Rudolf B, Becker A, Schneider U, Meyer-christoffer A, Ziese M (2010) The new GPCC full data reanalysis Version 5 providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC status report (December):1–7

  • Ruti PM, Williams JE, Hourdin F, Guichard F, Boone A, Van Velthoven P, Favot F, Musat I, Rummukainen M, Domínguez M, Gaertner MA, Lafore JP, Losada T, Rodriguez de Fonseca MB, Polcher J, Giorgi F, Xue Y, Bouarar I, Law K, Josse B, Barret B, Yang X, Mari C, Traore aK (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Lett 12(1):116–122. doi:10.1002/asl.305

    Article  Google Scholar 

  • Schrodin R, Heise E (2001) The multi-mayer version of the DWD soil model TERRA-LM. Cosmo technical report 2, DWD, Offenbach, Germany. http://www.cosmo-model.org/content/model/documentation/techReports/default.htm

  • Schrodin R, Heise E (2002) A new multi-layer soil-model. COSMO Newsl 2:139–151. http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm

  • Schulz JP (2008) Introducing sub-grid scale orographic effects in the COSMO model. COSMO Newsl 9:29–36. http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm

    Google Scholar 

  • Seifert A, Beheng KD (2001) A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos Res 59–60:265–281

    Article  Google Scholar 

  • Stackhouse Jr. PW, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) He NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21(1):10–12

    Google Scholar 

  • Steiner AL, Pal JS, Rauscher Sa, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi:10.1007/s00703-001-0592-9

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98(3–4):293–314. doi:10.1007/s00704-009-0110-4

    Article  Google Scholar 

  • Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, DellAquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-Interim reanalysis. Clim Dyn 35(1):231–247. doi:10.1007/s00382-009-0613-9

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Ruti PM, Calmanti S, DellAquila A (2011) The impact of deep convection on theWest African summermonsoon climate: a regional climate model sensitivity study. Q J R Meteorol Soc 137:141–71430. doi:10.1002/qj.853

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Coppola E, Mariotti L (2012) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol pp n/a–n/a, doi:10.1002/joc.3551

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • Uppala SM, Dee DP, Kobayashi S, Berrisford P, Simmons AJ (2008) Towards a climate adapt assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18

    Google Scholar 

  • Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130(8):2088–2097. doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2

    Article  Google Scholar 

  • Xue Y, Sales F, Lau WKM, Boone A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq L, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams SF, Wu MLC (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35(1):3–27. doi:10.1007/s00382-010-0778-2

    Article  Google Scholar 

  • Zhang Q, Körnich H, Holmgren K (2012) How well do reanalyses represent the southern African precipitation? Clim Dyn. doi:10.1007/s00382-012-1423-z

Download references

Acknowledgments

We would like to thank Grigory Nikulin (SMHI) for providing some of the observational dataset used in this study, and Diego Guizzardi (JRC) for preparing the FEWS database. The SRB data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center NASA/GEWEX SRB Project. GPCC Precipitation data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/ Computing resources have been provided by HLRS, Stuttgart, and the European Centre for Medium-Range Weather Forecast (ECMWF), Reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Panitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panitz, HJ., Dosio, A., Büchner, M. et al. COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim Dyn 42, 3015–3038 (2014). https://doi.org/10.1007/s00382-013-1834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1834-5

Keywords

Navigation