Skip to main content

Advertisement

Log in

A revisit of the interannual variation of the South China Sea upper layer circulation in summer: correlation between the eastward jet and northward branch

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The interannual variation of the South China Sea upper layer circulation in summer is revisited based on analysis of current derived from altimetry data, Acoustic Doppler Current Profilers moorings, and numerical simulations. Results show not only the interannual variation of the eastward jet (eastward branch), but also its anti-correlation with the northward branch. On interannual time scale, when the eastward branch is enhanced, the northward branch is weakened, and vice versa. Their variations are largely related to the change of the South China Sea summer monsoon (SCSSM), and are strongly influenced by the Luzon strait Transport (LST). Composite analysis reveals a stronger SCSSM and LST into the SCS in the developing phase of El Niño would lead to an eastward branch dominant circulation pattern, whereas a weaker SCSSM and reduced LST into the SCS in the decaying phase of El Niño favors a northward branch dominant circulation pattern. The distinct composite patterns appear in El Niño and Southern Oscillation cycles, rather than episodic event or multiyear El Niño or La Niña. Contribution of the transport of major straits in the SCS to the interannual variation of the SCS summer circulation is quantitatively evaluated for the first time, and the results show that the change of the planetary vorticity flux through three major straits (Luzon strait contributes most) is as equally important as the vorticity input change from local wind stress curl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Atlas R et al (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174

    Article  Google Scholar 

  • Cai S, Su J, Gan Z, Liu Q (2002) The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Cont Shelf Res 22:2247–2264

    Article  Google Scholar 

  • Cai S, Long X, Wang S (2007) A model study of the summer Southeast Vietnam Offshore Current in the southern South China Sea. Cont Shelf Res 27:2357–2372

    Article  Google Scholar 

  • Chen C, Wang G (2014) Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon. J Geophys Res. https://doi.org/10.1002/2014JC010309

    Article  Google Scholar 

  • Chen G, Xue H (2014) Westward intensification in marginal seas. Ocean Dyn 64:337–345

    Article  Google Scholar 

  • Chen G, Hou Y, Zhang Q, Chu X (2010) The eddy pair off eastern Vietnam: interannual variability and impact on thermohaline structure. Cont Shelf Res 30:715–723

    Article  Google Scholar 

  • Chen C, Lai Z, Beardsley RC, Xu Q, Lin H, Viet NT (2012) Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea. J Geophys Res 117:C03033. https://doi.org/10.1029/2011JC007150

    Article  Google Scholar 

  • Chen G, Xiu P, Chai F (2014) Physical and biological controls on the summer chlorophyll bloom to the east of Vietnam. J Oceanogr 70:323–328

    Article  Google Scholar 

  • Chern C-S, Wang J (2003) Numerical study of the upper-layer circulation in the South China Sea. J Oceanogr 59:11–24

    Article  Google Scholar 

  • Chu PC, Edmons NL, Fan C et al (1999) Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J Physic Oceanogr 29(11):2971–2989

    Article  Google Scholar 

  • Chu X, Dong C, Qi Y (2017) The influence of ENSO on an oceanic eddy pair in the South China Sea. J Geophys Res 122:1643–1652. https://doi.org/10.1002/2016JC012642

    Article  Google Scholar 

  • Da Nguyen Dac (2018) The interannual variability of the South Vietnam Upwelling: contributions of atmospheric, oceanic, hydrologic forcing and the ocean intrinsic variability. Ocean, Atmosphere. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2018. English. < tel-01849114>

  • Dippner JW, Bombar D, Loick-Wilde N, Voss M, Subramaniam A (2013) Comment on ‘‘Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea’’ by Chen et al. J Geophys Res 118:1618–1623. https://doi.org/10.1002/jgrc.20118

    Article  Google Scholar 

  • Fan Y, Fan K, Xu Z, Li S (2018) ENSO–South China Sea summer monsoon interaction modulated by the atlantic multidecadal oscillation. J Clim 31:3061–3076

    Google Scholar 

  • Fang G, Fang W, Fang Y, Wang K (1998) A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr Taiwanica 37(1):1–16

    Google Scholar 

  • Fang WD, Fang GH, Shi P, Huang QZ, Xie Q (2002) Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J Geophys Res 107(C11):3202. https://doi.org/10.1029/2002JC001343

    Article  Google Scholar 

  • Fang W, Qiu F, Guo P (2014) Summer circulation variability in the South China Sea during 2006–2010. J Mar Syst 137:47–54

    Article  Google Scholar 

  • Gan J, Qu T (2008) Coastal jet separation and associated flow variability in the southwest South China Sea. Deep-Sea Res I 55:1–19

    Article  Google Scholar 

  • Gan J, Li H, Curchitser EN, Haidvogel DB (2006) Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res 111:C06034. https://doi.org/10.1029/2005jc003298

    Article  Google Scholar 

  • Gan J, Liu Z, Hui C (2016) A three-layer alternating spinning circulation in the South China Sea. J Phys Oceanogr 46:2309–2315. https://doi.org/10.1175/JPO-D-16-0044.1

    Article  Google Scholar 

  • Hu J, Kawamura H, Hong H, Qi Y (2000) A review on the currents in the South China Sea: seasonal circulation South China Sea Warm Current and Kuroshio intrusion. J Oceanogr 56:607–624

    Article  Google Scholar 

  • Kuo NJ, Zheng Q, Ho CR (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens Environ 74:463–470

    Article  Google Scholar 

  • Li JP, Zeng QC (2002) A unified monsoon index. Geophys Res Lett 29(8):1274. https://doi.org/10.1029/2001GL013874

    Article  Google Scholar 

  • Li Y, Han W, Wilkin JL, Zhang WG, Arango H, Zavala-Garay J, Levin J, Castruccio FS (2014) Interannual variability of the surface summertime eastward jet in the South China Sea. J Geophys Res 119:7205–7228. https://doi.org/10.1002/2014JC010206

    Article  Google Scholar 

  • Li M, Wei J, Wang D, Gordon AL, Yang S, Malanotte-Rizzoli P, Jiang G (2019) Exploring the importance of the Mindoro-Sibutu pathway on the upper layer circulation of the South China Sea and the Indonesian throughflow. J Geophys Res 124:5054–5066. https://doi.org/10.1029/2018JC014910

  • Liu Z, Yang HJ, Liu QY (2001) Regional dynamics of seasonal variability of sea surface height in the South China Sea. J Phys Oceanogr 31(1):272–284

    Article  Google Scholar 

  • Liu QY, Kaneko A, Su JL (2008) Recent progress in studies of the South China Sea circulation. J Oceanogr 64(5):753–762. https://doi.org/10.1007/s10872-008-0063-8

    Article  Google Scholar 

  • Liu X, Wang J, Cheng X, Du Y (2012) Abnormal upwelling and chlorophyll-a concentration off South Vietnam in summer 2007. J Geophys Res 117:C07021. https://doi.org/10.1029/2012JC008052

    Article  Google Scholar 

  • Marshall DP, Tansley CE (2001) An implicit formula for boundary current separation. J Phys Oceanogr 31:1633–1638

    Article  Google Scholar 

  • Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea and the Pacific Ocean. J Geophys Res 101:12331–12352

    Article  Google Scholar 

  • Oey LY, Chang YL, Lin YC, Chang MC, Xu F, Lu HF (2013) ATOP—advanced Taiwan ocean prediction system based on the mpiPOM: Part 1: model descriptions, analyses and results. Terr Atmos Ocean Sci 24(1):137–158

    Article  Google Scholar 

  • Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644–3657

    Article  Google Scholar 

  • Quan Q, Xue H (2018) Layered model and insights into the vertical coupling of the South China Sea circulation in the upper and middle layers. Ocean Model 129:75–92

    Article  Google Scholar 

  • Quan Q, Xue H, Qin H, Zeng X, Peng S (2016) Features and variability of the South China Sea western boundary current from 1992 to 2011. Ocean Dyn 66:795–810

    Article  Google Scholar 

  • Shaw P-T, Chao S-Y (1994) Surface circulation in the South China Sea. Deep-Sea Res I 4(1):1663–1683

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Xie Q, Chen J, Li J, Chen R, He Y, Li D (2016) Observed evidence of the anomalous South China Sea western boundary current during the summers of 2010 and 2011. J Geophys Res 121:1145–1159. https://doi.org/10.1002/2015JC011434

    Article  Google Scholar 

  • Tang DL, Kawamura H, Doan-Nhu H, Takahashi W (2004) Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. J Geophys Res 109:C03014. https://doi.org/10.1029/2003JC002045

    Article  Google Scholar 

  • Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett 30(21):2121. https://doi.org/10.1029/2003GL018532

    Article  Google Scholar 

  • Wang C, Wang W, Wang D, Wang Q (2006a) Interannual variability of the South China Sea associated with El Nino. J Geophys Res 111:C03023. https://doi.org/10.1029/2005JC003333

    Article  Google Scholar 

  • Wang D, Liu Q, Huang RX, Du Y, Qu T (2006b) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605. https://doi.org/10.1029/2006GL026316

    Article  Google Scholar 

  • Wang G, Chen D, Su J (2006c) Generation and life cycle of the dipole in the South China Sea summer circulation. J Geophys Res 111:C06002. https://doi.org/10.1029/2005JC003314

    Article  Google Scholar 

  • Wang D, Xu H, Lin J, Hu J (2008) Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J Oceanogr 64:925–935. https://doi.org/10.1007/s10872-008-0076-3

    Article  Google Scholar 

  • Wang B, Huang F, Wu Z, Yang J, Fu X, Kikuchi K (2009) Multi-scale climate variability of the South China Sea monsoon: a review. Dyn Atmos Oceans 47:15–37

    Article  Google Scholar 

  • Wang G, Wang C, Huang RX (2010) Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon. J Clim 23:6115–6123

    Article  Google Scholar 

  • Wei J, Malanotte-Rizzoli P, Li M, Wang D (2016) Opposite variability of Indonesian throughflow and South China Sea throughflow in the Sulawesi Sea. J Phys Oceanogr. https://doi.org/10.1175/JPO-D-16-0132.1

    Article  Google Scholar 

  • Wu CR, Shaw PT, Chao SY (1998) Seasonal and interannual variations in the velocity field of the South China Sea. J Oceanogr 54:361–372

    Article  Google Scholar 

  • Wyrtki K (1961) Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. Naga Report, vol 2, University of California at San Diego, pp 164–169

  • Xie SP, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108(C8):3261. https://doi.org/10.1029/2003JC001867

    Article  Google Scholar 

  • Xie SP, Chang CH, Xie Q, Wang D (2007) Intraseasonal variability in the summer South China Sea: wind jet, cold filament, and recirculations. J Geophys Res 112:C10008. https://doi.org/10.1029/2007JC004238

    Article  Google Scholar 

  • Xu FH, Oey LY (2014) State analysis using the local ensemble transform Kalman filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn 64(6):905–923

    Article  Google Scholar 

  • Xu H, Xie SP, Wang Y, Zhuang W, Wang D (2008) Orographic effects on South China Sea summer climate. Meteorol Atmos Phys 100:275–289

    Article  Google Scholar 

  • Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res. https://doi.org/10.1029/2002jc001724

    Article  Google Scholar 

  • Yang H, Liu Q, Liu Z, Wang D, Liu X (2002) A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea. J Geophys Res 107(C7):3085

    Article  Google Scholar 

  • Yang H, Wu L, Shantong S, Zhaohui C (2015) Low-frequency variability of monsoon-driven circulation with application to the south China sea. J Phys Oceanogr 45(6):1632-1650

    Article  Google Scholar 

  • Yu JY, Fang SW (2018) The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys Res Lett. https://doi.org/10.1029/2018GL077664

    Article  Google Scholar 

  • Yu K, Qu T (2013) Imprint of the pacific decadal oscillation on the South China Sea throughflow variability. J Clim 26:9797–9805. https://doi.org/10.1175/JCLI-D-12-00785.1

    Article  Google Scholar 

  • Zeng L, Wang D, Chen J, Wang W, Chen R (2016) SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Sci Data 3:160029. https://doi.org/10.1038/sdata.2016.29

    Article  Google Scholar 

  • Zhou W, Chan CL (2007) ENSO and the South China Sea summer monsoon onset. Int J Climatol 27:157–167

    Article  Google Scholar 

  • Zhu Y, Sun J, Wang Y, Wei Z, Yang D, Qu T (2017) Effect of potential vorticity flux on the circulation in the South China Sea. J Geophys Res. https://doi.org/10.1002/2016JC012375

    Article  Google Scholar 

  • Zu T, Xue H, Wang D, Geng B, Zeng L, Liu Q, Chen J, He Y (2019) Interannual variation of the South China Sea circulation during winter: intensified in the southern basin. Clim Dyn 52:1917–1933

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and two anonymous reviewers for their thoughtful comments and suggestions. We thank Gengxin Chen for his helpful discussion. We also thank the Advanced Taiwan Ocean Prediction model group (http://mpipom.ihs.ncu.edu.tw) to provide codes for the model simulations used in this study. We benefited from numerous data sets made freely available, including AVISO (http://www.aviso.altimetry.fr/en/data/data-access.html), CCMP (http://www.remss.com/measurements/ccmp/). HYCOM GLBu0.08 (http://www.hycom.org/dataserver/gofs-3pt0/reanalysis). This research was supported by the National Natural Science Foundation of China (NSFC) under Project (41521005, 41731173, 41576002, 41776026, 41576003), by No. GML2019ZD0304 from Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and by the research fund from the State Key Laboratory of Tropical Oceanography (LTOZZ1803). Qiang Wang is also sponsored by the Pearl River S&T Nova Program of Guangzhou (201906010051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, T., Wang, D., Wang, Q. et al. A revisit of the interannual variation of the South China Sea upper layer circulation in summer: correlation between the eastward jet and northward branch. Clim Dyn 54, 457–471 (2020). https://doi.org/10.1007/s00382-019-05007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05007-5

Keywords

Navigation