Skip to main content

Advertisement

Log in

Interannual variation of the South China Sea circulation during winter: intensified in the southern basin

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Atlas R et al (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174

    Article  Google Scholar 

  • Cai S, Su J, Gan Z, Liu Q (2002) The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Cont Shelf Res 22:2247–2264

    Article  Google Scholar 

  • Chao S-Y, Shaw P-T, Wu S-Y (1996) El Nino modulation of the South China Sea circulation. Prog Oceanogr 38(1):51–93

    Article  Google Scholar 

  • Chen C, Wang G (2014) Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon. J Geophys Res. https://doi.org/10.1002/2014JC010309

    Google Scholar 

  • Chen G, Xue H (2014) Westward intensification in marginal seas. Ocean Dyn 64:337–345

    Article  Google Scholar 

  • Cheng X, Qiu B, Cheng X, Qi Y, Du Y (2015) Intra‑seasonal variability of Pacific-origin sea level anomalies around the Philippine Archipelago. J Oceanogr. https://doi.org/10.1007/s10872-015-0281-9

    Google Scholar 

  • Chern C-S, Sen J, Wang J (2010) Numerical study of mean flow patterns in the South China Sea and the Luzon Strait. Ocean Dyn 60:1047–1059

    Article  Google Scholar 

  • Chu PC, Edmons NL, Fan C et al (1999) Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J Phys Oceanogr 29(11):2971–2989

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19(2):183–204

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res 99:24821–24852

    Article  Google Scholar 

  • Fang G, Fang W, Fang Y, Wang K (1998) A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr Taiwan 37(1):1–16

    Google Scholar 

  • Fang G, Wei Z, Huang Q, Fang W (2002) Volume, heat and salt transports between the southern South China Sea and its adjacent waters, and their contribution to the Indonesian Throughflow. Oceanol Limnol Sin 33(3):296–302 (in Chinese, English abstract)

    Google Scholar 

  • Fang G, Chen H, Wei Z, Wang Y, Wang X, Li C (2006) Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J Geophys Res 111:C11S16. https://doi.org/10.1029/2005JC003276

    Article  Google Scholar 

  • Gan J, Qu T (2008) Coastal jet separation and associated flow variability in the southwest South China Sea. Deep Sea Res I 55:1–19

    Article  Google Scholar 

  • Gan J, Li H, Curchitser EN, Haidvogel DB (2006) Modeling South China Sea circulation. Response to seasonal forcing regimes. J Geophys Res 111:C06034. https://doi.org/10.1029/2005JC003298

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckmann A. Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Hsin Y-C, Wu C-R, Chao S-Y (2012) An updated examination of the Luzon Strait transport. J Geophys Res 117:C03022. https://doi.org/10.1029/2011JC007714

    Google Scholar 

  • Hu J, Kawamura H, Hong H, Qi Y (2000) A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J Oceanogr 56:607–624

    Article  Google Scholar 

  • Hu J, Zheng Q, Sun Z, Tai C (2012) Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J Geophys Res 117:C03010. https://doi.org/10.1029/2011JC007525

    Google Scholar 

  • Ivchenko VO, Treguier AM, Best SE (1997) A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. J Phys Oceanogr 27:5–22

    Article  Google Scholar 

  • Kim YY, Qu T, Jensen T, Miyama T, Mitsudera H, Kang H-W, Ishida A (2004) Seasonal and interannual variations of the North Equatorial Current bifurcation in a high resolution OGCM. J Geophys Res 109:C03040. https://doi.org/10.1029/2003JC002013

    Google Scholar 

  • Li Y, Han W, Wilkin JL, Zhang WG, Arango H, Zavala-Garay J, Levin J, Castruccio FS (2014) Interannual variability of the surface summertime eastward jet in the South China Sea. J Geophys Res 119:7205–7228. https://doi.org/10.1002/2014JC010206

    Article  Google Scholar 

  • Liang XS (2014) Unraveling the cause-effect relation between time series. Phys Rev E 90:052150

    Article  Google Scholar 

  • Liu Z, Yang HJ, Liu QY (2001) Regional dynamics of seasonal variability of sea surface height in the South China Sea. J Phys Oceanogr 31(1):272–284

    Article  Google Scholar 

  • Liu Q, Feng M, Wang D (2011) ENSO-induced interannual variability in the southeastern South China Sea. J Oceanogr 67(1):127–133

    Article  Google Scholar 

  • Liu QY, Huang RX, Wang DX (2012) Implication of the South China Sea throughflow for the interannual variability of the regional upper-ocean heat content. Adv Atmos Sci 29(1):54–62. https://doi.org/10.1007/s00376-011-0068-x

    Article  Google Scholar 

  • Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea and the Pacific Ocean. J Geophys Res 101:12331–12352

    Article  Google Scholar 

  • Qu T (2000) Upper layer circulation in the South China Sea. J Phys Oceanogr 30:1450–1460

    Article  Google Scholar 

  • Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644–3657

    Article  Google Scholar 

  • Quan Q, Xue H, Qin H, Zeng X, Peng S (2016) Features and variability of the South China Sea western boundary current from 1992 to 2011. Ocean Dyn 66:795–810. https://doi.org/10.1007/s10236-016-0951-1

    Article  Google Scholar 

  • Shaw P-T, Chao S-Y (1994) Surface circulation in the South China Sea. Deep Sea Res I 4(1):1663–l683

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The Regional Ocean Modeling System: a split-explicit, free-surface, topography following coordinates ocean model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Xie Q, Chen J, Li J, Chen R, He Y, Li D (2016) Observed evidence of the anomalous South China Sea western boundary current during the summers of 2010 and 2011. J Geophys Res 121:1145–1159. https://doi.org/10.1002/2015JC011434

    Article  Google Scholar 

  • Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett 30(21):2121. https://doi.org/10.1029/2003GL018532

    Article  Google Scholar 

  • Wang C, Wang W, Wang D, Wang Q (2006a) Interannual variability of the South China Sea associated with El Nino. J Geophys Res 111:C03023. https://doi.org/10.1029/2005JC003333

    Google Scholar 

  • Wang D, Liu Q, Huang RX, Du Y, Qu T (2006b) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605. https://doi.org/10.1029/2006GL026316

    Article  Google Scholar 

  • Wang G, Chen D, Su J (2006c) Generation and life cycle of the dipole in the South China Sea summer circulation. J Geophys Res 111:C06002. https://doi.org/10.1029/2005JC003314

    Google Scholar 

  • Wang Y, Fang G, Wei Z, Qiao F, Chen H (2006d) Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model. J Geophys Res 111:C11S14. https://doi.org/10.1029/2005JC003269

    Google Scholar 

  • Wang D, Xu H, Lin J, Hu J (2008) Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J Oceanogr 64:925–935. https://doi.org/10.1007/s10872-008-0076-3

    Article  Google Scholar 

  • Wei J, Malanotte-Rizzoli P, Eltahir EAB, Xue P, Xu D (2014) Coupling of a regional atmospheric model (RegCM3) and a regional ocean model (FVCOM) over the Maritime Continent. Clim Dyn 43:1575–1594. https://doi.org/10.1007/s00382-013-1983-6

    Article  Google Scholar 

  • Wei J, Malanotte-Rizzoli P, Li M-T, Wang H (2016) Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing and surface fluxes during 1970–2000. J Geophys Res 121:7953–7972. https://doi.org/10.1002/2016JC012078

    Article  Google Scholar 

  • Wu C-R, Chang C-WJ (2005) Interannual variability of the South China Sea in a data assimilation model. Geophys Res Lett 32:L17611. https://doi.org/10.1029/2005GL023798

    Google Scholar 

  • Wu C-R, Hsin Y-C (2012) The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. J Geophys Res 117:C07015. https://doi.org/10.1029/2012JC007968

    Google Scholar 

  • Wu C-R, Shaw P-T, Chao S-Y (1998) Seasonal and interannual variations in the velocity field of the South China Sea. J Oceanogr 54:361–372

    Article  Google Scholar 

  • Wyrtki K (1961) Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. Naga Report, vol 2. University of California, San Diego, pp 164–169

    Google Scholar 

  • Xie L, Zheng Q, Tian J, Zhang S, Feng Y, Yi X (2016) Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea. J Phys Oceanogr 46(10):2897–2913

    Article  Google Scholar 

  • Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res 109:C02017. https://doi.org/10.1029/2002JC001724

    Google Scholar 

  • Yang H, Liu Q, Liu Z, Wang D, Liu X (2002) A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea. J Geophys Res 107:C7, 3085

    Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, p 64. Woods Hole. Massachusetts

  • Zeng L, Wang D, Chen J, Wang W, Chen R (2016) SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Sci Data 3:160029. https://doi.org/10.1038/sdata.2016.29

    Article  Google Scholar 

  • Zhang M, von Storch H (2017) Toward downscaling oceanic hydrodynamics—suitability of a high-resolution OGCM for describing regional ocean variability in the South China Sea. Oceanologia. https://doi.org/10.1016/j.oceano.2017.01.001

    Google Scholar 

  • Zheng Q, Fang G, Song YT (2006) Introduction to special section: dynamics and Circulation of the Yellow, East, and South China Seas. J Geophys Res 111:C11S01. https://doi.org/10.1029/2005JC003261

    Google Scholar 

  • Zheng Q, Xie L, Zheng Z, Hu J (2017) Progress in research of mesoscale eddies in the South China Sea. Adv Mar Sci 35(20):131–158

    Google Scholar 

  • Zhuang W, Qiu B, Du Y (2013) Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago. J Geophys Res 118:6759–6773. https://doi.org/10.1002/2013JC009376

    Article  Google Scholar 

  • Zu T, Wang D, Gan J, Guan W (2014) On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system. J Mar Sys 136:65–79. https://doi.org/10.1016/j.jmarsys.2014.03.005

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and anonymous reviewers for their valuable suggestions and comments which greatly help to improve the manuscript. We also thank Xiaopei Lin for his helpful discussion. We benefited from numerous data sets made freely available, including AVISO (http://www.aviso.altimetry.fr/en/data/data-access.html), TMISST (http://apdrc.soest.hawaii.edu/datadoc/trmm_tmi_mon.php), CCMP (http://www.remss.com/measurements/ccmp/), OAFlux (http://oaflux.whoi.edu/heatflux.html). The numerical simulation is supported by the high-performance computing division and Ms. Dandan Sui of the South China Sea Institute of Oceanology. This study is jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11010302, XDA11010304), the National Natural Science Foundation of China (41521005, 41476013, 41576002, 41576012, 41628601, 41776025). The Guangdong Natural Science Funds for Distinguished Yong Scholar (2014A030306049). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, T., Xue, H., Wang, D. et al. Interannual variation of the South China Sea circulation during winter: intensified in the southern basin. Clim Dyn 52, 1917–1933 (2019). https://doi.org/10.1007/s00382-018-4230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4230-3

Keywords

Navigation