Anonymous (1958) The Venice system of the classification of marine waters according to salinity. Limnol Oceanogr 3(3):346–347. https://doi.org/10.4319/lo.1958.3.3.0346
Article
Google Scholar
Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWFocean reanalysis system ORAS4. Q J R Meteor Soc 139(674):1132–1161. https://doi.org/10.1002/qj.2063
Article
Google Scholar
Bersch M, Gouretski V, Sadikni R, Hinrichs I (2013) KLIWAS north sea climatology of hydrographic data (version 1.0). World data center for climate (WDCC). https://doi.org/10.1594/WDCC/KNSC_hyd_v1.0
Berg P, Döscher R, Koenigk T (2015) On the effects of constraining atmospheric circulation in a coupled atmosphere–ocean Arctic regional climate model. Clim Dyn. https://doi.org/10.1007/s00382-015-2783-y
Article
Google Scholar
Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Seferian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century͗ projections with CMIP5 models. Biogeosciences 10:6225–6245
Article
Google Scholar
Bülow K, Dieterich C, Elizalde A, Gröger M, Heinrich H, Huettl-Kabus S, Klein B, Mayer B, Meier HEM, Mikolajewicz U, Narayan N, Pohlmann T, Rosenhagen G, Schimanke S, Sein DV, Su J (2014) Comparison of three regional coupled ocean atmosphere models for the North Sea under today’s and future climate conditions. KLIWAS Schriftenreihe. 27/2014. https://doi.org/10.5675/kliwas_27/2014
Christensen KH, Sperrevik AK, Broström G (2018) On the variability in the onset of the norwegian coastal current. J Phys Oceanogr. https://doi.org/10.1175/jpo-d-17-0117.1
Article
Google Scholar
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Google Scholar
Dethloff K, Rinke A, Lynch A, Dorn W, Saha S, Handorf D (2012) Arctic regional climate models, Arctic climate change: the ACSYS decade and beyond. Book Ser Atmos Oceanogr Sci Libr 43:325–356. https://doi.org/10.1007/978-94-007-2027-5_8
Article
Google Scholar
Dieterich C, Wang S, Schimanke S, Gröger M, Klein B, Hordoir R, Samuelsson P, Liu Y, Axell L, Höglund A, Meier HEM (2019) Surface heat budget over the North Sea in climate change simulations. Atmosphere 10(5):272. https://doi.org/10.3390/atmos10050272
Article
Google Scholar
Donnelly C, Andersson JCM, Arheimer B (2016) Using flow signatures and catchment similarities to evaluate the e-hype multi-basin model across europe. Hydrol Sci J 61(2):255–273. https://doi.org/10.1080/02626667.2015.1027710
Article
Google Scholar
Döös K, Meier HEM, Döscher R (2004) The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33:261–266
Article
Google Scholar
Egbert GD, Erofeeva SY, Ray RD (2010) Assimilation of altimetry data for nonlinear shallow-water tides: quarter-diurnal tides of the Northwest European Shelf. Cont Shelf Res 30(6):668–679. https://doi.org/10.1016/j.csr.2009.10.011
Article
Google Scholar
Fleming-Lethinen V (2016) Secchi depth in the Baltic Sea—an indicator of eutrophication. University of Helsinki, Faculty of Biological and Environmental Sciences, Helsinki. pp 42. https://helda.helsinki.fi/bitstream/handle/10138/168525/Secchide.pdf?sequence=1. Accessed 30 July 2019
French RH, Cooper JJ, Vigg S (1982) Secchi depth relationships. Water Resour Bull 18(1):121–123
Article
Google Scholar
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183
Google Scholar
Gröger M, Maier-Reimer E, Mikolajewicz U, Moll A, Sein D (2013) NW European shelf under climate warming: implications for open ocean—shelf exchange, primary production, and carbon absorption. Biogeosciences 10(6):3767–3792. https://doi.org/10.5194/bg-10-3767-2013
Article
Google Scholar
Gröger M, Dieterich C, Meier HEM, Schimanke S (2015) Thermal air–sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus Ser A Dyn Meteorol Oceanogr 67:26911. https://doi.org/10.3402/tellusa.v67.26911
Article
Google Scholar
Gutowski WJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016
Article
Google Scholar
Hand R, Keenlyside NS, Omrani NE, Greatbatch RJ (2018) The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector. Clim Dyn. https://doi.org/10.1007/s00382-018-4151-1
Article
Google Scholar
Hjøllo SS, Skogen Morten D, Svendsen Einar (2009) Exploring currents and heat within the North Sea using a numerical model. J Mar Syst 78(1):180–192. https://doi.org/10.1016/j.jmarsys.2009.06.001
(ISSN 0924-7963)
Article
Google Scholar
Ho-Hagemann HTM, Gröger M, Rockel B, Zahn M, Geyer B, Meier HEM (2017) Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe. Clim Dyn 49:3851. https://doi.org/10.1007/s00382-017-3546-8
Article
Google Scholar
Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86:361–379
Article
Google Scholar
Holt J, Butenschön M, Wakelin SL, Artioli Y, Allen JI (2012) Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9:97–117. https://doi.org/10.5194/bg-9-97-2012
Article
Google Scholar
Holt J, Schrum C, Cannaby H, Daewel U, Allen I, Artioli Y, Bopp L, Butenschon M, Fach B, Harle J, Pushpadas D (2016) Potential impacts of climate change on the primary production of regional seas: a comparative analysis of five European seas. Prog Oceanogr 140:91–115
Article
Google Scholar
Hordoir R, Höglund A, Pemberton P, Schimanke S (2018) Sensitivity of the overturning circulation of the Baltic Sea to climate change, a numerical experiment. Clim Dyn 50:1425. https://doi.org/10.1007/s00382-017-3695-9
Article
Google Scholar
Jacob D et al (2014) EURO-CORDEX new high resolution climate change projections for European impact research. Reg Environ Change 14:563–578
Article
Google Scholar
Jeworrek J, Wu L, Dieterich C, Rutgersson A (2017) Characteristics of convective snow bands along the Swedish east coast. Earth Syst Dyn 8:163–175. https://doi.org/10.5194/esd-8-163-2017
Article
Google Scholar
Jutila E, Jokikokko E, Julkunen M (2005) The smolt run and postsmolt survival of Atlantic salmon, Salmo salar L., in relation to early summer water temperatures in the northern Baltic sea. Ecol Freshw Fish 14:69–78
Article
Google Scholar
Koenigk T, Berg P, Döscher R (2015) Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res 34:24603. https://doi.org/10.3402/polar.v34.24603
Article
Google Scholar
Kotlarski S, Lüthi D, Schär C (2015) The elevation dependency of 21st century European climate change: an RCM ensemble perspective. Int J Climatol. https://doi.org/10.1002/joc.4254
Article
Google Scholar
Lau WK-M, Wu H-T, Kim K-M (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169
Article
Google Scholar
Levang SJ, Schmitt RW (2015) Centennial changes of the global water cycle in CMIP5 models. J Clim 28(16):6489–6502. https://doi.org/10.1175/jcli-d-15-0143.1
Article
Google Scholar
Madec G (2011) NEMO ocean engine. User manual 3.3. IPSL, Paris
Google Scholar
Madec G, The NEMO Team (2012) “NEMO ocean engine”: Note du Pole de modélisation de l’Institut Pierre-Simon Laplace, France, No 27, ISSN no 1288-1619
Mathis M, Pohlmann T (2014) Projection of physical conditions in the North Sea for the 21st century. Clim Res 61:1–17. https://doi.org/10.3354/cr01232
Article
Google Scholar
Mathis M, Elizalde A, Mikolajewicz U (2017) Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf? Clim Dyn. https://doi.org/10.1007/s00382-017-3761-3
Article
Google Scholar
Matthäus W, Franck H (1992) Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12:1375–1400
Article
Google Scholar
Meier HEM (2007) Modeling the pathways and ages of inflowing salt-and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74(4):610–627. https://doi.org/10.1016/j.ecss.2007.05.019
Article
Google Scholar
Meier HEM (2015) Projected change-marine physics. In: BACC II Author Team (ed) Second assessment of climate change for the Baltic Sea basin, Chap 13. Regional Climate Studies, Springer, Berlin. https://doi.org/10.1007/978-3-319-16006-1
Chapter
Google Scholar
Meier HEM, Kauker F (2003) Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J Geophys Res Oceans. https://doi.org/10.1029/2003JC001799
Article
Google Scholar
Meier HEM, Saraiva S (2019) Projected oceanographical changes in the Baltic Sea until 2100. Oxf Res Encycl Clim Sci (in press)
Meier HEM, Döscher R, Coward AC, Nycander J, Döös K (1999) RCO—Rossby Centre regional Ocean climate model: model description (version 1.0) and first results from the hindcast period 1992/93. Reports Oceanography No. 26, SMHI, Norrköping, Sweden, p 102
Meier HEM, Andersson HC, Eilola K, Gustafsson BG, Kuznetsov I, Müller-Karulis B et al (2011) Hypoxia in future climates: a model ensemble study for the Baltic Sea. Geophys Res Lett. https://doi.org/10.1029/2011GL049929
Article
Google Scholar
Meier HEM, Hordoir R, Andersson H, Dieterich C, Eilola K, Gustafsson BG, Höglund A, Schimanke S (2012a) Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Clim Dyn 39:2421–2441. https://doi.org/10.1007/s00382-012-1339-7
Article
Google Scholar
Meier HEM, Müller-Karulis B, Andersson HC, Dieterich C, Eilola K, Gustafsson BG, Höglund A, Hordoir R, Kuznetsov I, Neumann T et al (2012b) Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: a multi-model ensemble study. Ambio 41:558–573. https://doi.org/10.1007/s13280-012-0320-3
Article
Google Scholar
Meier HEM, Andersson HC, Arheimer B, Blenckner T, Chubarenko B, Donnelly C, Eilola K, Gustafsson BG, Hansson A, Havenhand J et al (2012c) Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations. Environ Res Lett 7:034005. https://doi.org/10.1088/1748-9326/7/3/034005
Article
Google Scholar
Meier HEM, Edman M, Eilola K, Placke M, Neumann T, Andersson H, Brunnabend S-E, Dieterich C, Frauen C, Friedland R, Gröger M, Gustafsson BG, Gustafsson E, Isaev A, Kniebusch M, Kuznetsov I, Müller-Karulis B, Omstedt A, Ryabchenko V, Saraiva S, Savchuk OP (2018a) Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Front Mar Sci 5:440. https://doi.org/10.3389/fmars.2018.00440
Article
Google Scholar
Meier HEM, Väli G, Naumann M, Eilola K, Frauen C (2018b) Recently accelerated oxygen consumption rates amplify deoxygenation in the Baltic Sea. J Geophys Res Oceans 123(5):3227–3240. https://doi.org/10.1029/2017JC013686
Article
Google Scholar
Mencfel R (2011) Relationship between range of euphotic zone and visibility of Secchi disc in three lakes of Leczna-Wlodawa lake district, Teka Kom. Ochr. Kszt. Środ. Przyr.—OL PAN, 2011, 8, pp 97–103. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr8/Mencfel.pdf. Accessed 30 July 2019
Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaino M, Winguth A (2007) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn 28:599. https://doi.org/10.1007/s00382-006-0204-y
Article
Google Scholar
Mohrholz V (2018) Major baltic inflow statistics revised. Front Mar Sci 5:384. https://doi.org/10.3389/fmars.2018.00384
Article
Google Scholar
Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Mar Syst 81:213–224
Article
Google Scholar
Neumann T, Friedland R (2011) Climate change impacts on the BalticSea. In: Schernewski G, Hofstede J, Neumann T (eds) Global change and Baltic coastal zones, vol 1. Coastal research library. Springer Science + Business Media, Berlin, pp 23–32
Chapter
Google Scholar
Neumann T, Eilola K, Gustafsson B, Muller-Karulis B, Kuznetsov I, Meier HEM, Savchuk OP (2012) Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. Ambio 41:574–585
Article
Google Scholar
Notz D (2015) How well must climate models agree with observations? Philos Trans R Soc A 373:20140164. https://doi.org/10.1098/rsta.2014.016
Article
Google Scholar
Omstedt A, Edman M, Claremar B, Frodin P, Gustafsson E, Humborg C, Hägg H, Mörth M, Rutgersson A, Schurgers G, Smith B, Wällstedt T, Yurova A (2012) Future changes in the Baltic Sea acid-base (pH) and oxygen balances. Tellus Ser B Chem Phys Meteorol 64:1. https://doi.org/10.3402/tellusb.v64i0.19586
Article
Google Scholar
O’Neill B et al (2016) The scenario model intercomparison project (scenarioMIP) for CMIP6. Geosci Model Dev. https://doi.org/10.5194/gmd-2016-84
Article
Google Scholar
Pätsch J, Burchard H, Dieterich C, Gräwe U, Gröger M, Mathis M, Kapitza H, Bersch M, Moll A, Pohlmann T, Su J, Ho-Hagemann HTM, Schulz A, Eden C (2017) An evaluation of the North Sea circulation in global and regional models relevant for ecosystem simulations. Ocean Model. https://doi.org/10.1016/j.ocemod.2017.06.005
Article
Google Scholar
Pushpadas D, Schrum C, Daewel U (2015) Projected climate change effects on North Sea and Baltic Sea: CMIP3 and CMIP5 model-based scenarios. Biogeosci Discuss 12:12229–12279
Article
Google Scholar
Ramirez F, Afán I, Davis LS, Chiardia A (2017) Climate impacts on global hot spots of marine biodiversity. Sci Adv. https://doi.org/10.1126/sciadv.1601198
Article
Google Scholar
Remane A (1934) Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36:34–74
Google Scholar
Saraiva S, Markus Meier HE, Andersson H, Höglund A, Dieterich C, Gröger M, Hordoir R, Eilola K (2018) Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates. Clim Dyn. https://doi.org/10.1007/s00382-018-4330-0
Article
Google Scholar
Saraiva S, Meier HEM, Andersson HC, Höglund A, Dieterich C, Gröger M et al (2019) Uncertainties in projections of the Baltic Sea ecosystem driven by an ensemble of global climate models. Front Earth Sci 6:244. https://doi.org/10.3389/feart.2018.00244
Article
Google Scholar
Schrum C (2017) Regional climate modeling and air–sea coupling. Clim Sci Oxf Res Encycl 1:1. https://doi.org/10.1093/acrefore/9780190228620.013.3
Article
Google Scholar
Schrum C, Lowe J, Meier HEM, Grabemann I, Holt J, Mathis M, Pohlmann T, Skogen MD, Sterl A, Wakelin S (2016) Projected change—North Sea. In: Quante M, Colijn F (eds) North Sea Region climate change assessment. Springer, Berlin, pp 175–217. https://doi.org/10.1007/978-3-319-39745-0_6
Chapter
Google Scholar
Sein DV, Mikolajewicz U, Gröger M, Fast I, Cabos W, Pinto JG, Hagemann S, Semmler T, Izquierdo A, Jacob D (2015) Regionally coupled atmosphere ocean sea ice marine biogeochemistry model ROM: 1. Description and validation. J Adv Model Earth Syst. https://doi.org/10.1002/2014ms000357
Article
Google Scholar
Sein DV, Gröger M, Cabos W, Alvarez F, Hagemann S, Pinto J, Izquierdo A, Koldunov NV, Dvornikov AY, Limareva N, Martinez B, Jacob D (2018) Regionally coupled atmosphere–ocean–marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe. J Adv Earth Syst Model (in revision)
Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50:2107–2115. https://doi.org/10.1175/1520-0469(1993)050%3c2107:fsins%3e2.0.co;2
Article
Google Scholar
Steinacher M, Joos F, Frolicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005. https://doi.org/10.5194/bg-7-979-2010
Article
Google Scholar
Strandberg G, Bärring L, Hansson L, Jansson C, Jones C, Kjellström E et al (2014) CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. Reports meteorology and climatology, 116, SMHI, SE-60176 Norrköping, Sverige. https://www.smhi.se/polopoly_fs/1.90273!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RMK_116.pdf. Accessed 30 July 2019
Taucher J, Oschlies A (2011) Can we predict the direction of marine primary production change under global warming? Geophys Res Lett. https://doi.org/10.1029/2010GL045934
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-11-00094.1
Article
Google Scholar
Tian T, Boberg F, Bössing Christensen O, Hesselbjerg Christensen J, She J et al (2013) Resolved complex coastlines and land–sea contrasts in a high-resolution regional climate model: a comparative study using prescribed and modelled SSTs. Tellus A 2013(65):19951. https://doi.org/10.3402/tellusa.v65i0.19951
Article
Google Scholar
Tinker J, Lowe J, Pardaens A, Holt J, Barciela R (2016) Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog Oceanogr 148:56–73
Article
Google Scholar
Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388. https://doi.org/10.5194/gmd-6-373-2013
Article
Google Scholar
Väli G, Meier HEM, Elken J (2013) Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961–2007. J Geophys Res 118:6982–7000. https://doi.org/10.1002/2013JC009192
Article
Google Scholar
van Leeuwen S, Tett P, Mills D, van der Molen J (2015) Stratified and non-stratified areas in the North Sea: long-term variability and biological and policy implications. J Geophys Res Oceans 120:4670–4686. https://doi.org/10.1002/2014jc010485
Article
Google Scholar
van Pham TV, Brauch J, Frueh B, Ahrens B (2017) Simulation of snowbands in the Baltic Sea area with the coupled atmosphere–ocean-ice model COSMO-1309 CLM/NEMO. Meteorol Z 26(1):71–82. https://doi.org/10.1127/metz/13102016/0775
Article
Google Scholar
Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G et al (2009) Simulating the mass balance and salinity of arctic and Antarctic sea ice. Ocean Model 2009(27):33–53
Article
Google Scholar
Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J, Montesino-Pouzols F, Corona F, Junker K, Meier HEM, Dippner JW (2015) Scenario simulations of future salinity and Ecological Consequences in the Baltic Sea and adjacent North Sea areas—implications for environmental monitoring. Ecol Ind 50:196–205
Article
Google Scholar
Wang S, Dieterich C, Döscher R, Höglund A, Hordoir R, Meier HEM, Samuelsson P, Schimanke S (2015) Development of a new regional coupled atmosphere–ocean model in the North Sea and Baltic Sea. Tellus A 67:24284. https://doi.org/10.3402/tellusa.v67.24284
Article
Google Scholar
Whitfield AK, Elliott M, Basset A, Blaber SJM, West RJ (2012) Paradigms in estuarine ecology—a review of the Remane diagram with a suggested revised model for estuaries. Estuar Coast Shelf Sci 97:78–90
Article
Google Scholar
Worm B, Lotze H (2016) Marine biodiversity and climate change. In: Letcher TM (ed) Climate change. Elsevier, New York, pp 195–212. https://doi.org/10.1016/b978-0-444-63524-2.00013-0
Chapter
Google Scholar