Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China

Abstract

In this study, the Weather Research and Forecasting (WRF) model is used to quantify the effects of land use and cover change (LUCC) on the near-surface wind speed (SWS). The simulated results show that the SWS based on land use cover data for the 2010s (LUC10) is lower than that based on land use cover data for the 1980s (LUC80) by a difference of 0.17 m s−1; the LUCC effects also result in a decrease of 9.0% of the probability of strong wind. The LUCC effects induce significant alteration of the roughness length, causing changes in the drag coefficient and friction velocity, and thereby decrease SWS. A 0.1 m increase in roughness length could cause a 0.003 increase in drag coefficient and a 0.015 m s−1 increase in friction velocity. The contributions of LUCC to the SWS changes vary among different regions. The increase of SWS in Northeastern China is caused by the changes from deciduous broadleaf to deciduous needleleaf forests, mixed forests and croplands, and these changes decrease the surface roughness length, drag coefficient and friction velocity. The significant decrease of SWS over the middle reaches of the Yangtze River is induced by the changes from closed shrubland and cropland/natural vegetation mosaic to evergreen broadleaf and deciduous broadleaf forest. The slowdown of SWS over the Shandong Peninsula, the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and the Pearl River Delta can be attributed to the extension of urban and built-up areas and the decrease of croplands and the cropland/natural vegetation mosaic. The slowdown in SWS caused by LUCC is also revealed by the friction wind model (FWM); however, the FWM presented more significant effects of LUCC on decrease in SWS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Accadia C, Mariani S, Cassaioli M, Lavagnini A, Speranza A (2003) Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average on high-resolution verification grids. Weather Forecast 18:918–932

    Article  Google Scholar 

  2. Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sanchez-Lornzo A, Lopez-Moreno JI, Revuelto J, Trigo RM, Lopez-Bustins JA, Espirito-Santo F (2014) Homegenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Clim 27(10):3692–3712

    Article  Google Scholar 

  3. Azorin-Molina C, Guijarro JA, McVicar TR, Vicente-Serrano SM, Chen DL, Jerez S, Espirito-Santo F (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res Atmos 121(3):1059–1078

    Article  Google Scholar 

  4. Azorin-Molina C, Dunn RJH, Mears CA, Berrisford P, McVicar TR (2018) Surface winds (in “State of the Climate in 2017”). Bull Am Meteorol Soc 99(8):S41–S43

    Google Scholar 

  5. Berrisford P, Tobin I, Dunn RJH, Vautard R, McVicar TR (2015) Global climate; atmospheric circulation; surface winds) land surface wind speed (in “State of the Climate in 2014”). Bull Am Meteorol Soc 95(7):S33–S34

    Google Scholar 

  6. Bichet A, Wild M, Folini D, Schar C (2012) Causes foe decadal variations of speed over land: sensitivity studies with a global climate model. Geophys Res Lett 39(11):L11701

    Article  Google Scholar 

  7. Bonan GB (1997) Effects of land use on the climate of the United States. Clim Change 37(3):449–486

    Article  Google Scholar 

  8. Bonan GB (1999) Frost followed the plow: impacts of deforestation on the climate of the United States. Ecol Appl 9(4):1305–1315

    Article  Google Scholar 

  9. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations: the Kernel approach with S-Plus illustrations. Oxford University Press, Oxford, pp 1–205

    Google Scholar 

  10. Brazdil R, Chroma K, Dobrovolny P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29(2):223–242

    Article  Google Scholar 

  11. Chen L, Li D, Pryor SC (2013) Wind speed trends over China: quantifying the magnitude and assessing causality. Int J Climatol 33(11):2579–2590

    Article  Google Scholar 

  12. China Meteorological Administration (2003) Ground surface meteorological observation. China Meteorological Press, Beijing

    Google Scholar 

  13. Coceal O, Belcher ES (2005) Mean winds through an homogeneous urban canopy. Bound Layer Meteorol 115:47–68

    Article  Google Scholar 

  14. Cusack S (2013) A 101 year record of windstorms in the Netherlands. Clim Change 116(3–4):693–705

    Article  Google Scholar 

  15. Dadaser-Celik F, Cengiz E (2014) Wind speed trends over Turkey from 1975 to 2006. Int J Climatol 34(6):1913–1927

    Article  Google Scholar 

  16. Dunn RJH, Azorin-Molina C, Mears CA, Berrisford P, McVicar TR (2016) Surface winds (in “State of the climate in 2015”). Bull Am Meteorol Soc 97(8):S38–S40

    Google Scholar 

  17. Earl N, Dorling S, Hewston R, Von Glasow R (2013) 1980–2010 variability in U.K. surface wind climate. J Clim 26(4):1172–1191

    Article  Google Scholar 

  18. Feng S, Hu Q, Guo WH (2004) Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol 24(7):853–870

    Article  Google Scholar 

  19. Findell KL, Stouffer RJ, Shevliakova E, Milly PCD (2007) Modeled impact of anthropogenic land cover change on climate. J Clim 20(14):3621–3634

    Article  Google Scholar 

  20. Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55(2):692–700

    Article  Google Scholar 

  21. Fu GB, Yu JJ, Zhang YC, Hu SS, Quyang RL, Liu WB (2011) Temporal variation of wind speed in China for 1961–2007. Theor Appl Climatol 104(3):313–324

    Article  Google Scholar 

  22. Greene JS, Chatelain M, Morrissey M, Stadler S (2012) Estimated changes in wind Speed and wind power density over the western High Plains, 1971–2000. Theor Appl Climatol 109(3):507–518

    Article  Google Scholar 

  23. Guo H, Xu M, Hu Q (2011) Changes in near-surface wind speed in China: 1969–2005. Int J Climatol 31(3):349–358

    Article  Google Scholar 

  24. He JJ, Yu Y, Yu LJ, Liu N, Zhao SP (2017) Impacts of uncertainty in land surface information on simulated surface temperature and precipitation over China. Int J Climatol 37(1):829–847

    Article  Google Scholar 

  25. Hou AZ, Ni GH, Yang BO, Lei ZD (2013) Numerical analysis on the contribution of urbanization to wind stilling: an example over the Greater Beijing Metropolitan area. J Appl Meteorol Climatol 52(5):1105–1115

    Article  Google Scholar 

  26. Jerez S, Trigo RM, Vicente-Serrano SM, Pozo-Vazquez D, Lorente-Plazas R, Lorenzo-Lacruz J, Santos-Alamillos F, Montavez JP (2013) The impact of the North Atlantic Oscillation on the renewable energy resources in southwestern Europe. J Appl Meteorol Climatol 52(10):2204–2225

    Article  Google Scholar 

  27. Jiang Y, Luo Y, Zhao ZC, Tao SW (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol 99(3):421–430

    Article  Google Scholar 

  28. Jimenez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol 51(2):300–316

    Article  Google Scholar 

  29. Kalnay E, Kanamitsu M, Kistler R, Collins W et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  30. Kim ZB, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn 45(5):1699–1712

    Article  Google Scholar 

  31. Kristopher BK, Lundquist JK, Zhang L (2018) Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat Geosci 11(1):38–43

    Article  Google Scholar 

  32. Li Y, Wang Y, Chu HY, Tang JP (2008) The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. Chin Sci Bull 53(18):2859–2866

    Google Scholar 

  33. Li ZQ, Song LL, Ma H, Xiao JJ, Wang K, Chen L (2018) Observed surface wind speed declining induced by urbanization in East China. Clim Dyn 50(3):735–749

    Article  Google Scholar 

  34. Lin CG, Yang K, Qin J, Hu Y (2013) Observation coherent trends of surface and upper-Air wind speed over China since 1960. J Clim 26(9):2891–2903

    Article  Google Scholar 

  35. Lin CG, Yang K, Huang JP, Tang WJ, Qin J, Niu XL, Chen YY, Chen DL, Lu N, Fu R (2015) Impacts of wind stilling on solar radiation variability in China. Sci Rep 5:15135

    Article  Google Scholar 

  36. Liu X, Zhang XJ, Tang Q, Zhang XZ (2014) Effect of surface wind speed decline on modeled hydrological conditions in China. Hydrol Earth Syst Sci 18(8):2803–2813

    Article  Google Scholar 

  37. Malloy JW, Krahenbuhl DS, Bush CE, Balling RC, Santoro MM, White JR, Elder RC, Pace MB, Cerveny RS (2015) A surface wind extremes (“Wind Lulls” and “Wind Blows”) Climatology for Central North America and Adjoining Oceans (1979–2012). J Appl Meteorol Climatol 54(3):643–657

    Article  Google Scholar 

  38. Mastylo M (2013) Bilinear interpolation theorems and application. J Funct Anal 265(2):185–207

    Article  Google Scholar 

  39. McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue R (2008) Wind speed climatology and trends for Australia, 1975–2006: capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Lett 35(20):L20403

    Article  Google Scholar 

  40. McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416(417):182–205

    Article  Google Scholar 

  41. Najac J, Boe J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Clim Dyn 32:615–634

    Article  Google Scholar 

  42. Pryor SC, Barthelmie RJ (2010) Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc Natl Acad Sci USA 108(20):8167–8171

    Article  Google Scholar 

  43. Pryor SC, Ledolter J (2010) Addendum to “Wind speed trends over the contiguous United States”. J Geophys Res Atmos 115(D10):1159–1171

    Article  Google Scholar 

  44. Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory AD, Gutowski WJ Jr, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res Atmos 114:D14105

    Article  Google Scholar 

  45. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(34):251–270

    Google Scholar 

  46. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note. NCAR/TN-475 + STR

  47. Smits A, Klein-Tank AMG, Konnen GP (2005) Trends in storminess over the Netherlands, 1962–2002. Int J Climatol 25(10):1331–1344

    Article  Google Scholar 

  48. Tang JP, Niu XR, Wang SY, Gao HX, Wang XY, Wu J (2016) Statistical downscaling and dynamical downscaling of regional climate in China: present climate evaluations and future climate projections. J Geophys Res Atmos 121(5):2110–2129

    Article  Google Scholar 

  49. Tobin I, Berrisford P, Dunn RJH, Vautard R, McVicar TR (2014) Global climate; atmospheric circulation; surface winds) land surface wind speed (in “State of the Climate in 2013”). Bull Am Meteorol Soc 95(7):S28–S29

    Google Scholar 

  50. Tobin I, Vautard R, Balog I, Breon FM, Jerez S, Ruti PM, Thais F, Vrac M, Yiou P (2015) Assessing climate change impacts on European wind energy from ensembles high-resolution climate projections. Clim Change 128(1–2):99–112

    Article  Google Scholar 

  51. Tobin I, Jerez S, Vautard R, Thais F, Meijgaard EV, Prein A, Deque M, Kotlarski S, Maule CF, Nikulin G, Noel T, Teichmann C (2016) Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environ Res Lett 11(3):034013

    Article  Google Scholar 

  52. Troccoli A, Muller K (2012) Long-term wind Speed trends over Australia. J Clim 25(1):170–183

    Article  Google Scholar 

  53. Vautard R, Cattiaux JH, Yiou P, Thepaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11):756–761

    Article  Google Scholar 

  54. Vautard R, McVicar TR, Thepaut JN, Roderic ML (2012) Global climate; atmospheric circulation; surface winds) land surface winds and atmospheric evaporative demand (in “State of the Climate in 2011”). Bull Am Meteorol Soc 93(7):S6–S38

    Google Scholar 

  55. Wan H, Wang XL, Swail VR (2010) Homogenization and trend analysis of canadian near-surface wind speeds. J Clim 23(5):1209–1225

    Article  Google Scholar 

  56. Wang XL, Xiao PF, Feng XZ, Li HX, Zhang WB, Lin JT (2014) Effective composting method to produce cloud-free AVHRR image. IEEE Geosci Remote Sens Lett 11(1):328–332

    Article  Google Scholar 

  57. Wu J, Zha JL, Zhao DM (2016) Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim Dyn 46(3–4):847–863

    Article  Google Scholar 

  58. Wu J, Zha JL, Zhao DM (2017) Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Clim Dyn 48(1–2):131–149

    Article  Google Scholar 

  59. Wu J, Zha JL, Zhao DM, Yang QD (2018a) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn 51(5–6):2039–2078

    Article  Google Scholar 

  60. Wu J, Zha JL, Zhao DM, Yang QD (2018b) Changes of wind speed at different heights over Eastern China during 1980–2011. Int J Climatol 38(12):4476–4495

    Article  Google Scholar 

  61. Wu J, Zha JL, Zhao DM, Yang QD (2018c) Effects of surface friction and turbulent mixing on long-term changes in the near-surface wind speed over the Eastern China Plain from 1981 to 2010. Clim Dyn 51(5):2285–2299

    Article  Google Scholar 

  62. Xiao PF, Wang XH, Feng XZ, Zhang XL, Yang YK (2014) Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(10):4095–4106

    Article  Google Scholar 

  63. Xu M, Chang CP, Fu CB, Qi Y, Robock A, Robinson D, Zhang HM (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res Atmos 111(D24):1–8

    Article  Google Scholar 

  64. Yu ET, Sun JQ, Chen HP, Xiang WL (2015) Evaluation of a high-resolution historical simulation over China: climatology and extremes. Clim Dyn 45(7–8):2013–2031

    Article  Google Scholar 

  65. Yu LJ, Yin CM, Lin YC, He JJ (2017) Study of dynamical downscaling on near surface wind speed over China. J Arid Meteorol 35(1):23–28 (in Chinese)

    Google Scholar 

  66. Zha JL, Wu J, Zhao DM (2016) Changes of probabilities in different wind grades induced by land use and cover change in Eastern China Plain during 1980–2011. Atmos Sci Lett 17(4):264–269

    Article  Google Scholar 

  67. Zha JL, Wu J, Zhao DM (2017a) Effects of land use and cover change on the near-surface wind speed over China in the last 30 years. Prog Phys Geogr 41(1):46–67

    Article  Google Scholar 

  68. Zha JL, Wu J, Zhao DM, Yang QD (2017b) Changes of the probabilities in different ranges of near-surface wind speed in China during the period for 1970–2011. J Wind Eng Ind Aerodyn 169:156–167

    Article  Google Scholar 

  69. Zhang N, Gao ZQ, Wang XM, Chen Y (2010) Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor Appl Climatol 102(3):331–342

    Article  Google Scholar 

  70. Zhang N, Wang XM, Chen Y, Dai W, Wang XY (2016) Numerical simulations on influence of urban land cover expansion and anthropogenic heat release on urban meteorological environment in Pearl River Delta. Theor Appl Climatol 126(3):469–479

    Article  Google Scholar 

  71. Zhao DM (2012) Performance of regional integrated environment modeling system (RIEMS) in the simulation of surface air temperature over East Asia. Atmos Ocean Sci Lett 5(2):145–150

    Article  Google Scholar 

  72. Zhao DM (2013) Performance of regional integrated environment modeling system (RIEMS) in precipitation simulations over East Asia. Clim Dyn 40(7):1767–1787

    Article  Google Scholar 

  73. Zhao DM, Fu CB (2010) The analysis of the ability of RIEMS2.0 to simulate the two extreme climate events in the summers of 1997/1998 in China. Acta Meteorologica Sinica 68(3):325–338 (in Chinese)

    Google Scholar 

  74. Zhao DM, Wu J (2017a) Inclusion of land use changes in long-term regional climate simulations over Eastern Asia. Atmos Sci Lett 18(4):187–192

    Article  Google Scholar 

  75. Zhao DM, Wu J (2017b) The impact of land use and land cover changes on East Asian summer monsoon precipitation using the WRF-mosaic approach. Atmos Sci Lett 18(12):450–457

    Article  Google Scholar 

  76. Zhao DM, Fu CB, Yan XD (2009) Testing the ability of RIEMS2.0 to simulate multi-year precipitation and air temperature in China. Chin Sci Bull 54(17):3101–3111

    Article  Google Scholar 

Download references

Acknowledgements

We cordially thank the reviewers for their thorough comments and constructive suggestions, which improve the paper quality significantly. We also thank all the dataset providers. The work is supported by Chinese National Science Foundation (Grant number 41675149, 41775087, 41875178), National Key Research and Development Program of China (Grant number 2018YFA0606004). This work is also supported by the Chinese Jiangsu Collaborative Innovation Center for Climate Change, and the Program for Key Laboratory in University of Yunnan Province.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deming Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zha, J., Zhao, D., Wu, J. et al. Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China. Clim Dyn 53, 1783–1803 (2019). https://doi.org/10.1007/s00382-019-04737-w

Download citation

Keywords

  • Near-surface wind speed
  • Land use and cover change
  • Friction wind model
  • WRF
  • Roughness length