Skip to main content

Advertisement

Log in

Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We apply the Community Ice Sheet Model (CISM2) to determine the extent to which the Last Glacial Maximum (LGM) temperature and precipitation climatologies from the Paleoclimate Modelling Intercomparison Project 3 (PMIP3) simulations support the large North American ice sheets that were prescribed as a boundary condition. We force CISM2 with eight PMIP3 general circulation models (GCMs), and an additional model, GENMOM. Seven GCMs simulate LGM climatologies that support positive surface mass balances of the Laurentide and Cordilleran ice sheets (LIS, CIS) consistent with where ice was prescribed in the GCMs. Two GCMs simulate July temperatures that are too warm to support the ice sheets. Four of the nine CISM2 simulations support ice sheets in Beringia, in absence of prescribed ice in the driving GCMs and in disagreement with geologic evidence that indicates the area remained ice-free during the LGM. We test the sensitivity of our results to a range of snow and ice positive degree-day factors, daily, monthly, and climatological temperature and precipitation inputs, and we evaluate the role of albedo and snow in the simulations. Areas with perennial snow in the GCM simulations correspond well to the presence of ice in the CISM2 simulation. GCMs with unrealistically low surface albedos over the LIS yield simulations that fail to simulate realistic ice sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

CISM2 variables (surface mass balance, ice thickness, surface topography, bedrock topography) at model year 50,000 for the annual PDD simulations are archived in the U.S. Geological Survey ScienceBase repository (Alder and Hostetler 2019). The DOI of the dataset is https://doi.org/10.5066/F7ZK5FK2. Additional time slices and variables are available upon request.

References

  • Abe-Ouchi A, Segawa T, Saito F (2007) Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Clim Past 3:423–438. https://doi.org/10.5194/cp-3-423-2007

    Article  Google Scholar 

  • Abe-Ouchi A, Saito F, Kawamura K, Raymo ME, Okuno J, Takahashi K, Blatter H (2013) Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500:190–193. https://doi.org/10.1038/nature12374

    Article  Google Scholar 

  • Abe-Ouchi A, Saito F, Kageyama M, Braconnot P, Harrison SP, Lambeck K, Otto-Bliesner BL, Peltier WR, Tarasov L, Peterschmitt JY, Takahashi K (2015) Ice-sheet configuration in the CMIP5/pmip3 last glacial maximum experiments. Geosci Model Dev 8:3621–3637. https://doi.org/10.5194/gmd-8-3621-2015

    Article  Google Scholar 

  • Alder JR, Hostetler SW (2015) Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model. Clim Past 11:449–471. https://doi.org/10.5194/cp-11-449-2015

    Article  Google Scholar 

  • Alder JR, Hostetler SW (2019) Data release for applying the community ice sheet model to evaluate PMIP3 LGM climatologies over the North American ice sheets (ver. 2.0, February 2019). U.S. Geological Survey data release. https://doi.org/10.5066/F7ZK5FK2

  • Alder JR, Hostetler SW, Pollard D, Schmittner A (2011) Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM. Geosci Model Dev 4:69–83. https://doi.org/10.5194/gmd-4-69-2011

    Article  Google Scholar 

  • Argus DF, Peltier WR, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198:537–563. https://doi.org/10.1093/gji/ggu140

    Article  Google Scholar 

  • Bahadory T, Tarasov L (2018) LCice 1.0—a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17). Geosci Model Dev 11:3883–3902. https://doi.org/10.5194/gmd-11-3883-2018

    Article  Google Scholar 

  • Bao Q, Wu G, Liu Y, Yang J, Wang Z, Zhou T (2010) An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv Atmos Sci 27:1131–1142. https://doi.org/10.1007/s00376-010-9177-1

    Article  Google Scholar 

  • Bao Q, Lin P, Zhou T, Liu Y, Yu Y, Wu G, He B, He J, Li L, Li J, Li Y, Liu H, Qiao F, Song Z, Wang B, Wang J, Wang P, Wang X, Wang Z, Wu B, Wu T, Xu Y, Yu H, Zhao W, Zheng W, Zhou L (2013) The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv Atmos Sci 30:561–576. https://doi.org/10.1007/s00376-012-2113-9

    Article  Google Scholar 

  • Bartlein PJ, Harrison SP, Brewer S, Connor S, Davis BAS, Gajewski K, Guiot J, Harrison-Prentice TI, Henderson A, Peyron O, Prentice IC, Scholze M, Seppä H, Shuman B, Sugita S, Thompson RS, Viau AE, Williams J, Wu H (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802. https://doi.org/10.1007/s00382-010-0904-1

    Article  Google Scholar 

  • Bauer E, Ganopolski A (2014) Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim Past 10:1333–1348. https://doi.org/10.5194/cp-10-1333-2014

    Article  Google Scholar 

  • Bonelli S, Charbit S, Kageyama M, Woillez MN, Ramstein G, Dumas C, Quiquet A (2009) Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Clim Past 5:329–345. https://doi.org/10.5194/cp-5-329-2009

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner BL, Harrison S, Joussaume S, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277. https://doi.org/10.5194/cp-3-261-2007

    Article  Google Scholar 

  • Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner BL, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Geosci 2:417–424. https://doi.org/10.1038/nclimate1456

    Article  Google Scholar 

  • Briggs RD, Pollard D, Tarasov L (2014) A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat Sci Rev 103:91–115. https://doi.org/10.1016/j.quascirev.2014.09.003

    Article  Google Scholar 

  • Charbit S, Ritz C, Ramstein G (2002) Simulations of Northern Hemisphere ice-sheet retreat: sensitivity to physical mechanisms involved during the Last Deglaciation. Quat Sci Rev 21:243–265. https://doi.org/10.1016/S0277-3791(01)00093-2

    Article  Google Scholar 

  • Charbit S, Ritz C, Philippon G, Peyaud V, Kageyama M (2007) Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. Clim Past 3:15–37. https://doi.org/10.5194/cp-3-15-2007

    Article  Google Scholar 

  • COHMAP Members (1988) Climatic changes of the last 18,000 years—observations and model simulations. Science 241:1043–1052

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. https://doi.org/10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. In: Ether J, Gibbard PL (eds) Quaternary glaciations-extent and chronology—Part II: North America, vol 2. Elsevier, pp 373–424. https://doi.org/10.1016/S1571-0866(04)80209-4

  • Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. Geogr Phys Quat 41:237–263. https://doi.org/10.7202/032681ar

    Article  Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (2011) Quaternary glaciations—extent and chronology: a closer look, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Flato GM, Marotzke J, Abiodun M, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest CE, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 1–126

    Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Gregoire LJ, Payne AJ, Valdes PJ (2012) Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487:219–222. https://doi.org/10.1038/nature11257

    Article  Google Scholar 

  • Gregoire LJ, Valdes PJ, Payne AJ (2015) The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. Geophys Res Lett 42:9970–9979. https://doi.org/10.1002/2015GL066005

    Article  Google Scholar 

  • Gregoire LJ, Otto-Bliesner B, Valdes PJ, Ivanovic R (2016) Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophys Res Lett 43:9130–9137. https://doi.org/10.1002/2016GL070356

    Article  Google Scholar 

  • Hagdorn MKM (2003) Reconstruction of the past and forecast of the future European and British ice sheets and associated sea level change. In: G Boulton, N Hulton (eds) University of Edinburgh, College of Science and Engineering, School of GeoScience

  • Hargreaves JC, Annan JD, Ohgaito R, Paul A, Abe-Ouchi A (2013) Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene. Clim Past 9:811–823. https://doi.org/10.5194/cp-9-811-2013

    Article  Google Scholar 

  • Harrison SP, Bartlein PJ, Brewer S, Prentice IC, Boyd M, Hessler I, Holmgren K, Izumi K, Willis K (2014) Climate model benchmarking with glacial and mid-Holocene climates. Clim Dyn 43:671–688. https://doi.org/10.1007/s00382-013-1922-6

    Article  Google Scholar 

  • Harrison SP, Bartlein PJ, Izumi K, Li G, Annan J, Hargreaves J, Braconnot P, Kageyama M (2015) Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Geosci 5:735–743. https://doi.org/10.1038/nclimate2649

    Article  Google Scholar 

  • Harrison SP, Bartlein PJ, Prentice IC (2016) What have we learnt from palaeoclimate simulations? J Quat Sci 31:363–385. https://doi.org/10.1002/jqs.2842

    Article  Google Scholar 

  • Heinemann M, Timmermann A, Timm OE, Saito F, Abe-Ouchi A (2014) Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects. Clim Past 10:1567–1579. https://doi.org/10.5194/cp-10-1567-2014

    Article  Google Scholar 

  • Joussaume S, Taylor KE, Braconnot P, mitchell Kutzbach J, Harrison JE, Prentice SP, Broccoli IC, Abe-Ouchi AJ, Bartlein A, Bonfils PJ, Dong C, Guiot B, Herterich J, Hewitt K, Jolly CD, Kim D, Kislov JW, Kitoh A, Loutre A, Masson MF, McAvaney V, McFarlane B, de Noblet N, Peltier N, Peterschmitt WR, Pollard JY, Rind D, Royer D, Schlesinger JF, Syktus ME, Thompson J, Valdes SL, Vettoretti P, Webb G, Wyputta RS U (1999) Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26:859–862

    Article  Google Scholar 

  • Koenig SJ, Dolan AM, de Boer B, Stone EJ, Hill DJ, DeConto RM, Abe-Ouchi A, Lunt DJ, Pollard D, Quiquet A, Saito F, Savage J, van de Wal R (2015) Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim Past 11:369–381

    Article  Google Scholar 

  • Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625. https://doi.org/10.1007/s00382-006-0159-z

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. P Natl Acad Sci USA 111:15296–15303. https://doi.org/10.1073/pnas.1411762111

    Article  Google Scholar 

  • Lambert F, Kug J-S, Park RJ, Mahowald N, Winckler G, Abe-Ouchi A, O ‘ishi R, Takemura T, Lee J-H (2013) The role of mineral-dust aerosols in polar temperature amplification. Nat Geosci 3:487–491. https://doi.org/10.1038/nclimate1785

    Article  Google Scholar 

  • Laske G, Masters G (1997) A global digital map of sediment thickness. Eos Trans AGU 78(46):F483 (Abstract S41E-01)

    Google Scholar 

  • Licciardi JM, Clark PU, Jenson JW, Macayeal DR (1998) Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat Sci Rev 17:427–448. https://doi.org/10.1016/S0277-3791(97)00044-9

    Article  Google Scholar 

  • Lipscomb WH, Fyke JG, Vizcaino M, Sacks WJ, Wolfe J, Vertenstein M, Craig A, Kluzek E, Lawrence DM (2013) Implementation and initial evaluation of the glimmer community ice sheet model in the community earth system model. 26:7352–7371. https://doi.org/10.1175/JCLI-D-12-00557.1

  • Lunt DJ, Foster GL, Haywood AM, Stone EJ (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454:1102–1105. https://doi.org/10.1038/nature07223

    Article  Google Scholar 

  • Marshall SJ, Tarasov L, Clarke GKC, Peltier WR (2000) Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modelling challenges. Can J Earth Sci 37:769–793. https://doi.org/10.1139/e99-113

    Article  Google Scholar 

  • Marshall SJ, James TS, Clarke GKC (2002) North American Ice Sheet reconstructions at the Last Glacial Maximum. Quat Sci Rev 21:175–192. https://doi.org/10.1016/S0277-3791(01)00089-0

    Article  Google Scholar 

  • Nowicki SMJ, Payne A, Larour E, Seroussi H, Goelzer H, Lipscomb W, Gregory J, Abe-Ouchi A, Shepherd A (2016) Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci Model Dev 9:4521–4545. https://doi.org/10.5194/gmd-9-4521-2016

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and Holocene climate in CCSM3. J Clim 19:2526–2544. https://doi.org/10.1175/Jcli3748.1

    Article  Google Scholar 

  • Paterson WSB, Budd WF (1982) Flow parameters for ice sheet modeling. Cold Reg Sci Technol 6:175–177

    Article  Google Scholar 

  • Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP (2016) The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat Sci Rev 153:97–121. https://doi.org/10.1016/j.quascirev.2016.10.009

    Article  Google Scholar 

  • Peltier WR (1994) Ice-age paleotopography. Science 265:195–201. https://doi.org/10.1126/science.265.5169.195

    Article  Google Scholar 

  • Peltier WR (1998) Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Rev Geophys 36:603–689. https://doi.org/10.1029/98RG02638

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. https://doi.org/10.1002/2014JB011176

    Article  Google Scholar 

  • Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Clim Dyn 15:857–874

    Article  Google Scholar 

  • Pollard D (2000) Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Global Planet Change 24:79–106. https://doi.org/10.1016/S0921-8181(99)00071-5

    Article  Google Scholar 

  • Price S, Lipscomb WH, Hoffman M, Hagdorn M, Payne T, hebeler F, kennedy JH (2015) Community Ice Sheet Model (CISM) v2.0.5 Documentation. https://cism.github.io/data/cism_documentation_v2_0.pdf. Accessed 9 Apr 2018

  • Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59:113–128

    Google Scholar 

  • Roberts WHG, Payne AJ, Valdes PJ (2016) The role of basal hydrology in the surging of the Laurentide Ice Sheet. Clim Past 12:1601–1617. https://doi.org/10.5194/cp-12-1601-2016

    Article  Google Scholar 

  • Rogozhina I, Rau D (2014) Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet. Cryosphere 8:575–585. https://doi.org/10.5194/tc-8-575-2014

    Article  Google Scholar 

  • Rutt IC, Hagdorn M, Hulton NRJ, Payne AJ (2009) The Glimmer community ice sheet model. J Geophys Res doi. https://doi.org/10.1029/2008JF001015

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192. https://doi.org/10.1175/JCLI3612.1

    Article  Google Scholar 

  • Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice sheets on global ocean circulation. J Clim 24:2814–2829. https://doi.org/10.1175/2010jcli3982.1

    Article  Google Scholar 

  • Stone EJ, Lunt DJ, Rutt IC, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417. https://doi.org/10.5194/tc-4-397-2010

    Article  Google Scholar 

  • Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639. https://doi.org/10.5194/cp-9-621-2013

    Article  Google Scholar 

  • Stuhne GR, Peltier WR (2015) Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: the cases of Greenland and Antarctica. J Geophys Res Earth Surf 120:1841–1865. https://doi.org/10.1002/2015JF003580

    Article  Google Scholar 

  • Stuhne GR, Peltier WR (2017) Assimilating the ICE-6G_C Reconstruction of the latest quaternary ice age cycle into numerical simulations of the Laurentide and Fennoscandian Ice Sheets. J Geophys Res Earth Surf 122:2324–2347. https://doi.org/10.1002/2017JF004359

    Article  Google Scholar 

  • Tarasov L, Peltier WR (2004) A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat Sci Rev 23:359–388

    Article  Google Scholar 

  • Tarasov L, Richard Peltier W (2002) Greenland glacial history and local geodynamic consequences. Geophys J Int 150:198–229. https://doi.org/10.1046/j.1365-246X.2002.01702.x

    Article  Google Scholar 

  • Tarasov L, Dyke AS, Neal RM, Peltier WR (2012) A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet Sci Lett 315–316:30–40. https://doi.org/10.1016/j.epsl.2011.09.010

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Ullman DJ, Carlson AE, Anslow FS, LeGrande AN, Licciardi JM (2015) Laurentide ice-sheet instability during the last deglaciation. Nat Geosci 8:534–537. https://doi.org/10.1038/ngeo2463

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Melia D, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Wekerle C, Colleoni F, Näslund J-O, Brandefelt J, Masina S (2016) Numerical reconstructions of the penultimate glacial maximum Northern Hemisphere ice sheets: sensitivity to climate forcing and model parameters. J Glaciol 62:607–622. https://doi.org/10.1017/jog.2016.45

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System 820 Model v1 (MRI-ESM1)—model description. Meteorological Research Institute, Ibaraki

    Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, MIZUTA R, Yabu S, Obata A, Nakano H, KOSHIRO T, Ose T, Kitoh A (2012) A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 --Model Description and Basic Performance. JMSJ 90A:23–64. https://doi.org/10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Ziemen FA, Rodehacke CB, Mikolajewicz U (2014) Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions. Clim Past 10:1817–1836. https://doi.org/10.5194/cp-10-1817-2014

    Article  Google Scholar 

  • Zweck C, Huybrechts P (2005) Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J-Geophys-Res doi. https://doi.org/10.1029/2004JD005489

    Article  Google Scholar 

Download references

Acknowledgements

We thank William Lipscomb, Matthew Hoffman, Stephen Price, Gunter Leguy and the UCAR and LANL CISM team for help with the ice sheet model. Lauren Gregoire provided the North American domain and configuration files. We acknowledge the modeling centers that contributed LGM simulations to the PMIP3/CMIP5 archive. Maureen Walczak and the reviewers provided helpful feedback that improved our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jay Alder performed the ice sheet modeling and analysis. Steve Hostetler helped guide the experimental design and interpret the results. Both authors co-wrote the paper.

Corresponding author

Correspondence to Jay R. Alder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2041 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alder, J.R., Hostetler, S.W. Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets. Clim Dyn 53, 2807–2824 (2019). https://doi.org/10.1007/s00382-019-04663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04663-x

Keywords

Navigation