Ackerman TP, Flynn DM, Marchand RT (2003) Quantifying the magnitude of anomalous solar absorption. J Geophys Res Atmos 108(D9):4273. https://doi.org/10.1029/2002jd002674
Article
Google Scholar
Barker HW, Stephens GL, Partain PT, Bergman JW, Bonnel B, Campana K, Clothiaux EE, Clough S, Cusack S, Delamere J, Edwards J, Evans KF, Fouquart Y, Freidenreich S, Galin V, Hou Y, Kato S, Li J, Mlawer E, Morcrette JJ, O’Hirok W, Raisanen P, Ramaswamy V, Ritter B, Rozanov E, Schlesinger M, Shibata K, Sporyshev P, Sun Z, Wendisch M, Wood N, Yang F (2003) Assessing 1d atmospheric solar radiative transfer models: interpretation and handling of unresolved clouds. J Clim 16(16):2676–2699. https://doi.org/10.1175/1520-0442(2003)016%3C2676:Adasrt%3E2.0.Co;2
Article
Google Scholar
Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11:742–744. https://doi.org/10.1029/WR011i005p00742
Article
Google Scholar
Cess RD, Potter GL (1987) Exploratory studies of cloud radiative forcing with a general circulation model. Tellus 39A:460–473. https://doi.org/10.1111/j.1600-0870.1987.tb00321.x
Article
Google Scholar
Collins WD, Ramaswamy V, Schwarzkopf MD, Sun Y, Portmann RW, Fu Q, Casanova SEB, Dufresne JL, Fillmore DW, Forster PMD, Galin VY, Gohar LK, Ingram WJ, Kratz DP, Lefebvre MP, Li J, Marquet P, Oinas V, Tsushima Y, Uchiyama T, Zhong WY (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the intergovernmental panel on climate change (IPCC) fourth assessment report (A4). J Geophys Res Atmos 111(D14):Artn D14317. https://doi.org/10.1029/2005jd006713
Article
Google Scholar
Driemel A, Augustine JA, Behrens K, Colle S, Cox C, Cuevas-Agulló E, Denn FM, Duprat T, Fukuda M, Grobe H, Haeffelin M, Hyett N, Ijima O, Kallis A, Knap W, Kustov V, Long CN, Longenecker D, Lupi A, Maturilli M, Mimouni M, Ntsangwane L, Ogihara H, Olano X, Olefs M, Omori M, Passamani L, Pereira EB, Schmithüsen H, Schumacher S, Sieger R, Tamlyn J, Vogt R, Vuilleumier L, Xia X, Ohmura A, König-Langlo G (2018) Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017). Earth Syst Sci Data. https://doi.org/10.5194/essd-2018-8
Google Scholar
Fouquart Y, Bonnel B, Ramaswamy V (1991) Intercomparing shortwave radiation codes for climate studies. J Geophys Res Atmos 96(D5):8955–8968
Article
Google Scholar
Hakuba MZ, Folini D, Sanchez-Lorenzo A, Wild M (2013) Spatial representativeness of ground-based solar radiation measurements. J Geophys Res 118:8585–8597. https://doi.org/10.1002/jgrd.50673
Google Scholar
Hakuba MZ, Folini D, Sanchez-Lorenzo A, Wild M (2014) Spatial representativeness of ground-based solar radiation measurements-extension to the full meteosat disk. J Geophys Res 119(20):11760–11771. https://doi.org/10.1002/2014jd021946
Google Scholar
Hakuba MZ, Folini D, Wild M (2016) On the zonal near-constancy of fractional solar absorption in the atmosphere. J Clim 29(9):3423–3440. https://doi.org/10.1175/Jcli-D-15-0277.1
Article
Google Scholar
Hakuba MZ, Folini D, Wild M, Long CN, Schaepman-Strub G, Stephens GL (2017) Cloud effects on atmospheric solar absorption in light of most recent surface and satellite measurements. Radiat Process Atmos Ocean. https://doi.org/10.1063/1.4975543
Google Scholar
Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867
Article
Google Scholar
IPCC (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA
Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu LS, Weller RA (2013) Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26(9):2719–2740. https://doi.org/10.1175/Jcli-D-12-00436.1
Article
Google Scholar
Kato S, Rose FG, Rutan DA, Thorsen TJ, Loeb NG, Doelling DR, Huang XL, Smith WL, Su WY, Ham S-H (2018) Surface irradiances of edition 4.0 clouds and the earth's radiant energy system (CERES) energy balanced and filled (EBAF) data product. J Clim 31(11):4501–4527. https://doi.org/10.1175/JCLI-D-17-0523.1
Article
Google Scholar
Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78(2):197–208
Article
Google Scholar
Kim DY, Ramanathan V (2008) Solar radiation budget and radiative forcing due to aerosols and clouds. J Geophys Res Atmos 113(D2):D02203. https://doi.org/10.1029/2007jd008434
Article
Google Scholar
L’Ecuyer TS, Beaudoing HK, Rodell M, Olson W, Lin B, Kato S, Clayson CA, Wood E, Sheffield J, Adler R, Huffman G, Bosilovich M, Gu G, Robertson F, Houser PR, Chambers D, Famiglietti JS, Fetzer E, Liu WT, Gao X, Schlosser CA, Clark E, Lettenmaier DP, Hilburn K (2015) The observed state of the energy budget in the early twenty-first century. J Clim 28(21):8319–8346. https://doi.org/10.1175/Jcli-D-14-00556.1
Article
Google Scholar
Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. https://doi.org/10.1175/2008jcli2637.1
Article
Google Scholar
Loeb NG, Kato S, Su WY, Wong TM, Rose FG, Doelling DR, Norris JR, Huang XL (2012) Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv Geophys 33(3–4):359–385. https://doi.org/10.1007/S10712-012-9175-1
Article
Google Scholar
Loeb NG, Doelling DR, Wang HL, Su WY, Nguyen C, Corbett JG, Liang LS, Mitrescu C, Rose FG, Kato S (2018) Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J Clim 31(2):895–918. https://doi.org/10.1175/Jcli-D-17-0208.1
Article
Google Scholar
Long CN, Ackerman TP (2000) Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J Geophys Res Atmos 105(D12):15609–15626. https://doi.org/10.1029/2000jd900077
Article
Google Scholar
Long CN, Gaustad KL (2004) The shortwave (sw) clear-sky detection and fitting algorithm: algorithm operational details and explanations, technical report arm tr-004. Atmos. Radiat. Measure. Program, U. S. Dep. of Energy, Washington, D. C. https://www.arm.gov/publications/tech_reports/arm-tr-004.1.pdf
Long CN, Turner DD (2008) A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J Geophys Res Atmos. https://doi.org/10.1029/2008jd009936
Google Scholar
Morcrette JJ (2002) Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM SGP site. Mon Weather Rev 130(2):257–277
Article
Google Scholar
Nyeki S, Wacker S, Grobner J, Finsterle W, Wild M (2017) Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications. Atmos Meas Tech 10(8):3057–3071. https://doi.org/10.5194/amt-10-3057-2017
Article
Google Scholar
Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136
Article
Google Scholar
Oreopoulos L, Mlawer E (2010) The continual intercomparison of radiation codes (CIRC) assessing anew the quality of gcm radiation algorithms. Bull Am Meteorol Soc 91(3):305–310. https://doi.org/10.1175/2009bams2732.1
Article
Google Scholar
Oreopoulos L, Mlawer E, Delamere J, Shippert T, Cole J, Fomin B, Iacono M, Jin ZH, Li JN, Manners J, Raisanen P, Rose F, Zhang YC, Wilson MJ, Rossow WB (2012) The continual intercomparison of radiation codes: results from phase I. J Geophys Res Atmos 117:Artn D06118. https://doi.org/10.1029/2011jd016821
Article
Google Scholar
Ott P (2017) Variation of solar radiation under cloud free conditions at BSRN sites in CMIP5 models. Master Thesis, University of Zurich, Zurich, Switzerland
Paynter D, Ramaswamy V (2012) Variations in water vapor continuum radiative transfer with atmospheric conditions. J Geophys Res Atmos 117:Artn D16310. https://doi.org/10.1029/2012jd017504
Article
Google Scholar
Paynter D, Ramaswamy V (2014) Investigating the impact of the shortwave water vapor continuum upon climate simulations using GFDL global models. J Geophys Res Atmos 119(18):10720–10737. https://doi.org/10.1002/2014jd021881
Article
Google Scholar
Pfeifroth U, Sanchez-Lorenzo A, Manara V, Trentmann J, Hollmann R (2018) Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J Geophys Res Atmos 123(3):1735–1754. https://doi.org/10.1002/2017jd027418
Google Scholar
Pincus R, Mlawer EJ, Oreopoulos L, Ackerman AS, Baek S, Brath M, Buehler SA, Cady-Pereira KE, Cole JNS, Dufresne JL, Kelley M, Li JN, Manners J, Paynter DJ, Roehrig R, Sekiguchi M, Schwarzkopf DM (2015) Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys Res Lett 42(13):5485–5492. https://doi.org/10.1002/2015gl064291
Article
Google Scholar
Potter GL, Cess RD (2004) Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J Geophys Res Atmos 109(D2):D02106. https://doi.org/10.1029/2003jd004018
Article
Google Scholar
Potter GL, Slingo JM, Morcrette JJ, Corsetti L (1992) A modeling perspective on cloud radiative forcing. J Geophys Res Atmos 97(D18):20507–20518. https://doi.org/10.1029/92jd01909
Article
Google Scholar
Radel G, Shine KP, Ptashnik IV (2015) Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths. Q J R Meteorol Soc 141(688):727–738. https://doi.org/10.1002/qj.2385
Article
Google Scholar
Ramanathan V (1987) The role of earth radiation budget studies in climate and general-circulation research. J Geophys Res Atmos 92(D4):4075–4095. https://doi.org/10.1029/Jd092id04p04075
Article
Google Scholar
Stephens GL, Li JL, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5(10):691–696. https://doi.org/10.1038/Ngeo1580
Article
Google Scholar
Takahashi HG (2018) A systematic tropospheric dry bias in the tropics in CMIP5 models: relationship between water vapor and rainfall characteristics. J Meteorol Soc Jpn 96:415–423. https://doi.org/10.2151/jmsj.2018-046
Article
Google Scholar
Trenberth KE, Fasullo JT (2012) Tracking earth’s energy: from El Nino to global warming. Surv Geophys 33(3–4):413–426. https://doi.org/10.1007/S10712-011-9150-2
Article
Google Scholar
Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311. https://doi.org/10.1175/2008bams2634.1
Article
Google Scholar
Wang HL, Su WY (2013) Evaluating and understanding top of the atmosphere cloud radiative effects in intergovernmental panel on climate change (IPCC) fifth assessment report (AR5) coupled model intercomparison project phase 5 (CMIP5) models using satellite observations. J Geophys Res Atmos 118(2):683–699. https://doi.org/10.1029/2012jd018619
Article
Google Scholar
Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868
Article
Google Scholar
Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus A 60(5):932–945. https://doi.org/10.1111/J.1600-0870.2008.00342.X
Article
Google Scholar
Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos 114:D00d16. https://doi.org/10.1029/2008jd011470
Google Scholar
Wild M, Ohmura A, Gilgen H, Roeckner E (1995) Validation of general-circulation model radiative fluxes using surface observations. J Clim 8(5):1309–1324
Article
Google Scholar
Wild M, Ohmura A, Gilgen H, Roeckner E, Giorgetta M, Morcrette JJ (1998) The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Clim Dyn 14(12):853–869
Article
Google Scholar
Wild M, Long CN, Ohmura A (2006) Evaluation of clear-sky solar fluxes in gcms participating in AMIP and IPCC-AR4 from a surface perspective. J Geophys Res Atmos 111(D1):D01104. https://doi.org/10.1029/2005jd006118
Article
Google Scholar
Wild M, Folini D, Schar C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40(11–12):3107–3134. https://doi.org/10.1007/S00382-012-1569-8
Article
Google Scholar
Wild M, Folini D, Hakuba MZ, Schar C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, Konig-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44(11–12):3393–3429. https://doi.org/10.1007/s00382-014-2430-z
Article
Google Scholar
Wild M, Ohmura A, Schar C, Muller G, Folini D, Schwarz M, Hakuba MZ, Sanchez-Lorenzo A (2017) The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth Syst Sci Data 9(2):601–613. https://doi.org/10.5194/essd-9-601-2017
Article
Google Scholar