Sea–ice conditions during years of low September sea ice
Except for 2003, the September SIC for the entire Northern Hemisphere is anomalously low during all LIYs, which are identified with respect to the investigation area (Fig. 2). This indicates that the investigation area captures a large part of the Arctic-wide interannual sea–ice variability. Most of the SIC anomalies during LIYs are centered in the Laptev, East Siberian, Chukchi, and Beaufort Seas. During LIYs, the September SIC anomalies in the investigation area are between − 9 and − 19% (Fig. 1; Table 1). Note that owing to the trend of SIC in recent years (e.g., Serreze and Stroeve 2015), the 5-year reference climatology of SIC for 2007 and 2012 is significantly reduced relative to earlier periods along the coasts of the East Siberian, Chukchi and Beaufort Seas (Fig. 2). For example, in September 2007 most of the East Siberian Sea and parts of the Beaufort Sea were ice-free. Yet SIC anomalies in the investigation area still fall more than 18% below the 5-year reference values for 2007 and 2012 (Table 1).
All LIYs exhibit an earlier melt onset than the 5-year reference climatology over the investigation area or parts thereof (Fig. 4). Earlier melt onset over the investigation area is most significant in 1990, occurring on average about 9 days earlier (Table 2). In 2003 and 2007 the area-averaged melt onset is not significantly different from the 5-year mean climatology. In contrast, for HIYs the September SIC anomalies are 10–20% higher than the respective 5-year reference climatology over the investigation area (Table 1; Fig. 1). Also, the melt onset is significantly later for all HIYs except for 2006 (Table 2). Hence these results indicate that the melt onset plays a role for the September sea–ice conditions.
Spring atmospheric conditions during years of low September sea ice
As displayed in Fig. 3, spring and early summer of LIYs are often characterized by episodes with anomalously positive LWNT over the investigation area. In the five LIYs, between 8 and 14 episodes with enhanced LWNT occur, compared to 5 and 8 for HIYs; the average over all years is 8 (Table 1). The length of the individual events varies between 1 and 7 days (not shown). The LWNT episodes in LIYs are associated with an average LWNT anomaly of approximately 2 GJm−2 during a total of 5–9 weeks throughout the entire spring period, compared to less than 1 GJm−2 for HIYs during 2–4 weeks. During this time of the year, LWNT anomalies dominate the surface energy budget, as anomalies of shortwave net radiation (SWN) contribute little to the surface energy budget owing to a high surface albedo and, in the beginning of the season, low solar inclination. Changes in LWNT are associated with variations in surface and near-surface air temperature, water–vapor content, and cloud cover. Variations in water vapor and clouds alter the emissivity of the atmosphere and hence LWD at the surface.
Fewer LWNT episodes tend to occur over the LIYs during the latter part of these years; the number and duration of LWNT episodes are statistically different from the 1979–2012 average only for the years 1990, 1995 and 2007 (Table 1). One factor contributing to this decrease could be related to a shortening of the spring season owing to a significantly earlier melt onset (Stroeve et al. 2014). Further, the LWNT anomalies during the LWNT episodes become weaker with time, while sea–ice concentration anomalies become larger. This is consistent with an Arctic regime shift towards thin first-year ice. Thinner ice melts more easily and is more prone to wind forcing, hence less energy is needed to cause significant ice anomalies. Moreover, as the ice thins and the SIC declines, surface temperatures increase, which leads to an increased upward longwave flux and reduced positive net longwave radiation.
Figure 6 shows the lag correlation between anomalies in LWNT and the convergence of moisture advection (ConLE). During LIYs, LWNT anomalies occur in coherence with significant positive anomalies of ConLE, although with a lag in the order of one day; the estimated lag is sensitive to the length of the anomalies. Extended episodes of positive anomalies of ConDE also prevail throughout spring of LIYs, but are less correlated to the LWNT anomalies in most of the years (not shown). This suggests that anomalies of LWNT are mostly affected by anomalies of ConLE, rather than by ConDE. Only 2007 displays a significant correlation between LWNT and ConDE; 0.35 for a 3-day lag (not shown), indicating that ConDE anomalies played a larger role in the surface-energy budget during spring of 2007 than in other LIYs. In 2007, however, an early melt onset occurred only in a small part of the investigation area (Fig. 4), suggesting that melt-related processes during spring contributed less to the 2007 September sea–ice minimum than did other processes. This is consistent with findings by Graversen et al. (2011), who suggested that latent and dry-static energy transports into the Arctic during summer (June to August), rather than in spring, contributed to the sea–ice anomaly in 2007. Zhang et al. (2008) and Kauker et al. (2009) argued that ice dynamics may also have been important. Kauker et al. (2009) found that a large part of the sea–ice reduction in 2007 can be attributed to an anomalously low ice-thickness in March, increased wind stress on ice in May and June, as well as relatively warm sea-surface temperatures throughout September. A warming of the sea–ice layer during spring owing to increased LWNT might, however, have pre-conditioned the ice and altered its sensitivity to other atmospheric and oceanic forcing later in the year.
Atmospheric circulation associated with LWNT episodes during LIYs
In this section the characteristic atmospheric circulation patterns (CPs) during episodes of enhanced LWNT during LIYs are explored. The objective is to ascertain whether common atmospheric conditions prevailed during these episodes of positive LWNT anomalies. Several distinct CPs prevail; we refer to these patterns according to their position in the SOM matrix (CP1–CP12; Fig. 5). To specifically focus on the circulation patterns during episodes of positive LWNT anomaly over the investigation area during LIYs, we map potential contributors to LWNT anomalies onto the master SOM. These are the surface energy fluxes, the convergence of moisture and heat, and the anomalies of integrated cloud water and atmospheric moisture. We do this only for spring days in LIYs with a positive LWNT anomaly over the investigation area; see Fig. 7. Note that by this construction, anomalies in LWD and LWN are positive for all CPs (Fig. 7c, g). Also, CP7 did not occur throughout spring of any of the LIYs. In Fig. 8 we also explore the frequency of occurrence and the persistence of the CPs; only the most frequently occurring CPs will be discussed.
Approximately 44% of the days during LWNT episodes in LIYs are associated with low geopotential heights centered near the Russian coast with high values over the North American side of the Arctic (CP1–CP4; Fig. 5). Such a pattern is often referred to as the Arctic dipole anomaly (AD; Overland and Wang 2005). The AD favors flow from the North Pacific across the central Arctic towards the Atlantic and is associated with northward transport of heat and moisture into the investigation area, causing ConLE and ConDE anomalies to become positive (Fig. 7a, b). This leads to an increase of clouds and anomalously high surface temperatures (not shown) over the investigation area, thereby creating positive anomalies of LWD and LWN at the surface (Fig. 7c, f, g). Note, however, that certain variations in the AD evident in CP1–CP4 may transport air from the cold Asian continent rather than the warm North Pacific into the investigation area, leading to negative surface flux anomalies.
For clusters CP5–CP12 geopotential heights are also low along the Russian coast but, unlike AD patterns, the low geopotential heights extend far west across the Norwegian Sea, Fram Strait, Greenland, and the Canadian archipelago (Fig. 5). The detailed structure differs between these CPs, as the spatial extent of the geopotential heights varies. The associated circulation of most of these patterns results in a westerly flow into the investigation area, with a southwesterly component in patterns with low geopotential heights that extend farther inland over Russia (Fig. 5). The westerly flow brings relatively moist air from Russia and the Kara Sea into the western part of the investigation area, where it leads to positive anomalies in ConLE (Fig. 7a). Only for CP8 are the ConLE anomalies negative over the investigation area, while ConDE anomalies are very small or negative for most of these patterns (Fig. 7b). The fact that almost all patterns during LWNT episodes during LIYs are associated with positive ConLE anomalies supports earlier findings suggesting that moisture convergence triggers positive LWNT anomalies (see Sect. 3.2).
Figure 8 shows the timing in spring of the different patterns (Fig. 8a) and their persistence (Fig. 8b). Note that CP9 and CP10 occur relatively early in spring of LIYs, likely causing an earlier preconditioning of the surface (Fig. 8a). The most persistent circulation patterns during LWNT episodes in spring of LIYs are CP1, CP3, CP5, and CP10 (Fig. 8b). Their median persistence exceeds 3 consecutive days and most of these patterns can last more than 5 consecutive days, giving them a longer time to act on the surface. Consequently, their impact is likely larger than for the other patterns. In contrast to these relatively persistent patterns, CP2, CP6, CP7 and CP11 are transition patterns that occur only rarely during LIYs, and when they do occur they are less persistent than other patterns.
While similar circulation patterns do occur during LWNT episodes and during the remaining spring days (hereafter RSDs; days that fall outside the LWNT episodes in spring of LIYs), there are significant differences in frequencies and persistence of the patterns (Fig. 8). Specifically, CP1, CP3 and CP10 occur more frequently during LWNT episodes than during RSDs of LIYs; 45 and 24%, respectively. These patterns are also more persistent during LWNT episodes than during the RSDs (Fig. 8b). In contrast, CP5 and CP12 occur less frequently during LWNT episodes than during RSDs; 17 and 29%, respectively. Note, that ConLE and ConDE anomalies are very small or negative for CP9 and CP12, which suggests that the positive anomalies of LWNT that are assigned to these CPs are not associated with the convergence of moisture and dry-static energy. Further, almost all patterns show larger positive anomalies of clouds, water vapor, and ConLE during LWNT episodes than during the RSDs (Fig. S2 in the Supplementary Material), indicating that the same patterns have a different impact on the surface during the RSDs.
Differences in the atmospheric circulation between LIYs and HIYs
Differences in SIC, melt onset, and frequency and intensity of the LWNT episodes are evident for the LIYs and HIYs (Figs. 3, 9, and S1). The five LIYs are associated with 8–14 episodes of positive surface LWNT anomalies, resulting in an average energy surplus 0.8–4.0 GJm−2 over 32–62 days during spring (Table 1). In contrast, HIYs are characterized by fewer and shorter positive LWNT episodes. The four identified HIYs exhibit between 5 and 8 events that are associated with a smaller energy surplus of 0.1–1.6 GJm−2 and that span fewer days (20–49 days) as compared to LIYs.
Further, differences in the frequencies and timing of the atmospheric circulation patterns between the two sets of years are found for the LWNT episodes in spring (see Fig. 9). Interestingly, LWNT episodes during LIYs are often characterized by less frequent occurrence of CP4 (an AD pattern) as compared to the HIY LWNT episodes, while CP9–CP12 occur more frequently (Fig. 9a, b). We find that AD-like circulation patterns (CP1–CP4) prevail on about 44% of the LWNT episodes in LIYs and 49% of the days in HIYs (Fig. 9). CP9 to CP12 occur during 44 and 35% of the LWNT episodes for LIYs and HIYs, respectively. The largest differences in frequencies are evident for CP4 and CP9 (Fig. 9b).
Another characteristic feature of the spring circulation patterns in LIYs is the total duration of all LWNT episodes. Figure 9 shows that CP1, CP5, CP8, and CP10 have episodes of positive LWNT anomalies persisting longer in LIYs than for HIYs, with differences becoming more significant for the longer-lasting episodes for all of these patterns except CP10 (Fig. S3 in the Supplementary Material). Three of these patterns also occur earlier in spring, resulting in an earlier preconditioning of the surface in LIYs and, hence, an earlier melt onset (Fig. 4; Tables 1, 2). Owing to the earlier melt onset, feedback mechanisms have longer time to act on the surface. Note that an earlier melt onset, leading to increased absorption of solar radiation throughout the spring and summer season, was found to be one of the major drivers of differences in annual ice evolution (e.g., Wang et al. 2016).
We also explore possible associations between the occurrence of the LWNT episodes and differing phases of the Arctic Oscillation (AO) by mapping the AO-index onto the SOM matrix in Fig. 10. The AO index is defined as the leading principal component of the Northern Hemisphere sea-level pressure (Thompson and Wallace 1998). A positive index (AO+) represents lower-than-average sea-level pressure over the Arctic. We find that CP4, CP6, CP7 and CP9-CP11 are associated with a positive phase of the AO during spring (Fig. 10a). During LWNT episodes in spring of LIYs, 7 out of the 11 occurring circulation patterns are associated with AO+ (CP3, CP4 and CP8 CP12; Fig. 10b); during LWNT episodes in spring of HIYs only 3 patterns are associated with AO+ (CP7, CP9 and CP10; Fig. 10c). These results indicate that the patterns in the bottom part of the SOM matrix are in general associated with AO+. Further, a larger positive AO in CP3, CP4, CP9 and CP12 during LWNT episodes in LIYs rather than those in HIYs suggests a link between the positive phase of the AO and the frequency of occurrence of episodes of enhanced LWNT during spring (see also Fig. 9). Note, however, that the AO index is based on pan-Arctic sea-level pressure anomalies and is not restricted to the investigation area. Hence, this association between the circulation patterns and the AO might only partly explain the processes behind the more frequent occurrence of LWNT episodes during LIYs over the investigation area.