Skip to main content

Advertisement

Log in

Decadal potential predictability of upper ocean heat content over the twentieth century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The statistical method, Average Predictability Time (APT) decomposition, is used in the present paper to estimate the decadal predictability of upper ocean heat content over the global ocean, North Pacific and North Atlantic, respectively. The twentieth century simulations from CMIP5 outputs are the main data sources in this study. On global scale, the leading predictable component is characterized by a warming trend over the majority of oceans, which is related to the anthropogenic forced response. The second predictable component has significant loadings in the North Atlantic, especially in the subtropical region, which originates from the Atlantic Multidecadal Oscillation (AMO) predictability. To separate interactions among different ocean basins, we further maximize APT in individual North Pacific and North Atlantic oceans. It is found that the second and the third predictable component in North Pacific are significantly correlated with the well-known North Pacific Gyre Oscillation mode and the Pacific Decadal Oscillation respectively. Upper limit prediction skill of these two components are on the order of 6 years. In contrast, the most predictable component derived from the North Atlantic features an AMO-like spatial structure with its prediction skill up to 18 years, while the basin mode due to global warming only exists as the third component. This indicates the interdecadal variability in the North Atlantic is strong enough to mask the anthropogenic climate signals. Furthermore, predictability in the real world is also investigated and compared with model results by using observation-based data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bjerknes J (1964) Atlantic air–sea interaction. Adv Geophys 20:1–82

    Google Scholar 

  • Boer GJ (2004) Long time-scale potential predictability in an ensemble of coupled climate models. Clim Dyn 23(1):29–44. doi:10.1007/s00382-004-0419-8

    Article  Google Scholar 

  • Boer GJ (2011) Decadal potential predictability of twenty-first century climate. Clim Dyn 36:1119–1133

    Article  Google Scholar 

  • Boer GJ, Lambert SJ (2008) Multi-model decadal potential predictability of precipitation and temperature. Geophys Res Lett 35:L05706. doi:10.1029/2008GL033234

    Article  Google Scholar 

  • Boer GJ, Kharin VV, Merryfield WJ (2013) Decadal predictability and forecast skill. Clim Dyn 41(7–8):1817–1833. doi:10.1007/s00382-013-1705-0

    Article  Google Scholar 

  • Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. doi:10.1029/2003GL018597

    Article  Google Scholar 

  • Branstator G, Teng H (2010) Two limits of initial-value decadal predictability in a CGCM. J Clim 23:6292–6311

    Article  Google Scholar 

  • Branstator G, Teng H (2012) Potential impacts of initialization on CMIP5 decadal predictions. Geophys Res Lett. doi:10.1029/2012GL051974

    Google Scholar 

  • Branstator G, Teng H (2014) Is AMOC more predictable than North Atlantic heat content? J Climate 27:3537–3550. doi:10.1175/JCLI-D-13-00274.1

    Article  Google Scholar 

  • Cane MA (2010) Climate science: decadal predictions in demand. Nat Geosci 3(4):231–232

    Article  Google Scholar 

  • Chhak KC, Di Lorenzo E, Schneider N, Cummins PF (2009) Forcing of low-frequency ocean variability in the northeast Pacific. J Clim 22:1255–1276

    Article  Google Scholar 

  • Chikamoto Y et al (2013) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn 40:1201–1222

    Article  Google Scholar 

  • Chu PC (2011) Global upper ocean heat content and climate variability. Ocean Dyn 61(8):1189–1204

    Article  Google Scholar 

  • Collins M, Botzet M, Carril AF et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203. doi:10.1175/JCLI3654.1

    Article  Google Scholar 

  • Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426(6968):826–829. doi:10.1038/nature02206

    Article  Google Scholar 

  • DelSole T (2004) Predictability and information theory. Part I: measures of predictability. J Atmos Sci 61:2425–2440

    Article  Google Scholar 

  • DelSole T, Tippett MK (2007) Predictability: recent insights from information theory. Rev Geophys 45:RG4002. doi:10.1029/2006RG000202

    Article  Google Scholar 

  • DelSole T, Tippett MK (2009a) Average predictability time. Part I: theory. J Atmos Sci 66:1172–1187. doi:10.1175/2008JAS2868.1

  • DelSole T, Tippett MK (2009b) Average predictability time. Part II: seamless diagnoses of predictability on multiple time scales. J Atmos Sci 66:1188–1204. doi:10.1175/2008JAS2869.1

  • DelSole T, Jia L, Tippett MK (2013) Decadal prediction of observed and simulated sea surface temperatures. Geophys Res Lett 40:2773–2778. doi:10.1002/grl.50185

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838

    Article  Google Scholar 

  • Ding R, Li J, Zheng F, Feng J, Liu D (2015) Estimating the limit of decadal-scale climate predictability using observational data. Clim Dyn 46: 1–18. doi:10.1007/s00382-015-2662-6

    Google Scholar 

  • Enfield DB et al (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Folland CK, Parker DE, Colman AW, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Nino: decadal and interdecadal climate variability. Springer, Berlin, pp 73–102

    Chapter  Google Scholar 

  • Griffies SM, Bryan K (1997a) A predictability study of simulated North Atlantic multidecadal variability. Clim Dyn 13:459–488

  • Griffies SM, Bryan K (1997b) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184

  • Hermanson L, Eade R, Robinson NH, Dunstone NJ, Andrews MB, Knight JR, Scaife AA, Smith DM (2014) Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys Res Lett. doi:10.1002/2014GL060420

    Google Scholar 

  • Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930. doi:10.1175/JCLI-D-14-00006.1

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using icoads and the Kobe collection. Int J Climatol 25:865–879

    Article  Google Scholar 

  • Jia L, DelSole T (2011) Diagnosis of multiyear predictability on continental scales. J Clim 24:5108–5124

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9:2407–2423

    Article  Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Lienert F, Doblas-Reyes FJ (2013) Decadal prediction of interannual tropical and North Pacific sea surface temperature. J Geophys Res Atmos 118:5913–5922

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079.

    Article  Google Scholar 

  • Meehl GA et al (2009) Decadal prediction: can it be skillful? Bull Amer Meteor Soc 90:1467–1485

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2010) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn. doi:10.1007/s00382-010-0958-0

    Google Scholar 

  • Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37. doi:10.1029/2010GL044517

  • Newman M (2007) Interannual to decadal predictability of tropical and North Pacific Sea surface temperatures. J Climate 20:2333–2356

    Article  Google Scholar 

  • Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26:5260–5269

    Article  Google Scholar 

  • Persechino A, Mignot J, Swingedouw D, Labetoulle S, Guilyardi E (2013) Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Clim Dyn. doi:10.1007/s00382-012-1466-1

    Google Scholar 

  • Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17(22):4463–4472. doi:10.1175/3209.1

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi:10.1007/s003820050284

    Article  Google Scholar 

  • Qiu B, Chen S, Schneider N, Taguchi B (2014) A coupled decadal prediction of the dynamic state of the kuroshio extension system. J Clim 27:1751–1764

    Article  Google Scholar 

  • Schneider N, Miller AJ, Pierce DW (2002) Anatomy of North Pacific decadal variability. J Clim 15(6):586–605

    Article  Google Scholar 

  • Shukla J (1981) Dynamical predictability of monthly means. J Atmos Sci 38:2547–2572

    Article  Google Scholar 

  • Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Teng H, Branstator G, Meehl GA (2011) Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J Clim 24:6054–6076. doi:10.1175/2011JCLI4207.1

    Article  Google Scholar 

  • Wada A, Chan JCL (2008) Relationship between typhoon activity and upper ocean heat content. Geophys Res Lett 35(L17):603

    Google Scholar 

  • Wouters B, Hazeleger W, Drijfhout S, Oldenborgh GJ, Guemas V (2013) Multiyear predictability of the North Atlantic subpolar gyre. Geophys Res Lett 40:3080–3084

    Article  Google Scholar 

  • Wu Y, Latif M, Park W (2015) Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model. Clim Dyn 46:1–12 doi:10.1007/s00382-015-2871-z

    Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late twentieth-century north atlantic ocean heat content. J Clim 25:5173–5189

    Article  Google Scholar 

  • Yi DL, Zhang L, Wu L (2015) On the mechanisms of decadal variability of the North Pacific gyre oscillation over the twentieth century. J Geophys Res Oceans 120(9):6114–6129. doi:10.1002/2014JC010660

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface–subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35. doi:10.1029/2008GL035463

  • Zhang L, Delworth T (2015) Analysis of the characteristics and mechanisms of the pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory. J Clim 28:1654–1662. doi:10.1175/JCLI-D-14-00647.1

    Google Scholar 

Download references

Acknowledgements

The authors thank the two anomalous reviewers for their great contribution to the manuscript. Discussions with Dr. Timothy DelSole and Dr. Liwei Jia are also greatly appreciated. This work is supported by National Natural Science Foundation of China (NSFC) Key project (41130859), China National Global Change Major Research Project (2013CB956201), and NSFC projects (41490640, 41490643, 41521091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, L. & Wu, L. Decadal potential predictability of upper ocean heat content over the twentieth century. Clim Dyn 49, 3293–3307 (2017). https://doi.org/10.1007/s00382-016-3513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3513-9

Keywords

Navigation