Skip to main content
Log in

Modulation of equatorial Pacific sea surface temperature response to westerly wind events by the oceanic background state

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Equatorial Pacific Westerly Wind Events (WWEs) impact ENSO evolution through their local and remote oceanic response. This response depends upon the WWE properties (duration, intensity, fetch…) but also on the underlying oceanic state. Oceanic simulations with an identical idealised western Pacific WWE applied every 3 months on seasonally and interannually varying oceanic conditions over the 1980–2012 period allow characterizing and understanding the modulation of the WWE response by the oceanic background state. These simulations reveal that the amplitude of the Sea Surface Temperature (SST) response, which can vary by one order of magnitude, is far more sensitive to the oceanic background conditions than the dynamical response to WWEs. The amplitude of the surface-flux driven cooling in the western Pacific is strongly modulated by zonal advection, through interannual variations in the background SST zonal gradient. The amplitude of the warming at the warm pool eastern edge is controlled by horizontal advection, and varies as a function of the zonal SST gradient and distance between the WWE and warm pool eastern edge. The amplitude of the eastern Pacific warming varies as a function of the background thermocline depth and local winds. Overall, only the amplitude of the WWE-driven western Pacific cooling can be clearly related to the phase of ENSO, while the WWE driven SST response in the central and eastern Pacific is more diverse and less easily related to large-scale properties. The implications of these findings for ENSO predictability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderson SP, Weller RA, Lukas RB (1996) Surface buoyancy forcing and the mixed layer of the western pacific warm pool : observations and 1d model results. J Clim 9(12):3056–3085

    Article  Google Scholar 

  • Barnston A, Tippett M (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93(5):ES48–ES50

    Article  Google Scholar 

  • Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical sst anomalies throughout the indo-pacific basin. J Clim 15(23):3427–3442

    Article  Google Scholar 

  • Belamari S, Redelsperger J-L, Pontaud M (2003) Dynamic role of a westerly wind burst in triggering an equatorial Pacific warm event. J Clim 16(12):1869–1890

    Article  Google Scholar 

  • Benestad RE, Sutton RT, Anderson DL (2002) The effect of el nino on intrasea-sonal kelvin waves. Q J R Meteorol Soc 128(582):1277–1291

    Article  Google Scholar 

  • Bjerknes J (1966) A possible response of the atmospheric hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388

    Article  Google Scholar 

  • Boulanger J-P, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15(3):205–225

    Article  Google Scholar 

  • Boulanger J-P, Durand E, Duvel JP, Menkes C, Delecluse P, Imbard M, Lengaigne M, Madec G, Masson S (2001) Role of non-linear oceanic processes in the response to westerly wind events: new implications for the 1997 El Niño onset. Geophys Res Lett 28(8):1603–1606

    Article  Google Scholar 

  • Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997–1998 El Niño. Clim Dyn 22(2–3):267–280

    Article  Google Scholar 

  • Busalacchi AJ, Cane MA (1988) The effect of varying stratification on low-frequency equatorial motions. J Phys Oceanogr 18(6):801–812

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Jin FF (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  • Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R (2015). Strong influence of westerly wind bursts on El Niño diversity. Nat Publ Group 8(5):339–345

    Google Scholar 

  • Chiodi A, Harrison DE, Vecchi A (2014) Subseasonal atmospheric variability and El Niño Waveguide warming: observed effects of the madden–julian oscillation and westerly wind events. J Clim 27(10):3619–3642

    Article  Google Scholar 

  • Cronin MF, McPhaden MJ (1997) The upper ocean heat balance in the western equatorial warm pool during September–December 1992. J Geophys Res 102(C4):8533–8553

    Article  Google Scholar 

  • Cronin MF, McPhaden MJ (1998) Upper ocean salinity balance in the western equatorial Pacific. J Geophys Res Oceans 103(C12):27567–27587

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balma- seda M, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Delcroix T, Eldin G, McPhaden M, Morlière A (1993) Effects of westerly wind bursts upon the western equatorial pacific ocean, February–April 1991. J Geophys Res Oceans 98(C9):16379–16385

    Article  Google Scholar 

  • Dewitte B, Purca S, Illig S, Renault L, Giese BS (2008) Low-frequency modulation of intraseasonal equatorial kelvin wave activity in the pacific from soda: 1958–2001. J Clim 21(22):6060–6069

    Article  Google Scholar 

  • Dourado M, Caniaux G (2001) Surface heat budget in an oceanic simulation using data from tropical ocean-global atmosphere coupled ocean–atmosphere response experiment. J Geophys Res 108:16

    Google Scholar 

  • Drushka K, Bellenger H, Guilyardi E, Lengaigne M, Vialard J, Madec G (2015) Processes driving intraseasonal displacements of the eastern edge of the warm pool: the contribution of westerly wind events. Clim Dyn 44(3–4):735–755

    Article  Google Scholar 

  • Dussin R, Barnier B (2013) The making of dfs 5.1. Drakkar Project Rep

  • Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18(24):5224–5238

    Article  Google Scholar 

  • Fairall C, Bradley E, Rogers D, Edson J, Youngs G (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response. Geophys Res 101:3747–3764

    Article  Google Scholar 

  • Fedorov AV (2002) The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Q J R Meteorol Soc 128(579):1–23

    Article  Google Scholar 

  • Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of el niño events. Clim Dyn 44(5–6):1381–1401

    Google Scholar 

  • Feng M, Hacker P, Lukas R (1998) Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial pacific during toga coare. J Geophys Res 103(10):289–310

    Google Scholar 

  • Feng M, Lukas R, Hacker P, Weller RA, Anderson SP (2000) Upper-ocean heat and salt balances in the western equatorial pacific in response to the intraseasonal oscillation during toga coare. J Clim 13(14):2409–2427

    Article  Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg AT, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295

    Article  Google Scholar 

  • Giese BS, Harrison DE (1990) Aspects of the Kelvin wave response to episodic wind forcing. J Geophys Res Oceans 95(C5):7289–7312

    Article  Google Scholar 

  • Giese BS, Harrison D (1991) Eastern equatorial pacific response to three composite westerly wind types. J Geophys Res Oceans (1978–2012) 96(S01):3239–3248

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics, volume 30. Academic Press, New Jersey

    Google Scholar 

  • Graham N, Barnett T (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238(4827):657–659

    Article  Google Scholar 

  • Guilyardi E, Madec G, Terray L (2001) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean–atmosphere gcm. Clim Dyn 17(8):589–599

    Article  Google Scholar 

  • Guilyardi E, Cai W, Collins M, Fedorov AV, Jin F-F, Kumar A, Sun D-Z, Wittenberg A (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteorol Soc 93(2):235

    Article  Google Scholar 

  • Halkides D, Lee T (2011) Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical indian ocean. Dyn Atmos Oceans 51(3):77–93

    Article  Google Scholar 

  • Harrison D, Craig A (1993) Ocean model studies of upper-ocean variability at 0°, 160° w during the 1982–1983 enso: local and remotely forced response. J Phys Oceanogr 23(3):425–451

    Article  Google Scholar 

  • Harrison D, Giese BS (1988) Remote westerly wind forcing of the eastern equatorial pacific; some model results. Geophys Res Lett 15(8):804–807

    Article  Google Scholar 

  • Harrison DE, Schopf PS (1984) Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon Weather Rev 112(5):923–933

    Article  Google Scholar 

  • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ, Hunke EC (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223–253

    Article  Google Scholar 

  • Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41:4654–4663

    Article  Google Scholar 

  • Jackett DR, Mcdougall TJ (1995) Minimal adjustment of hydrographic profiles to achieve static stability. J Atmos Oceanic Technol 12(2):381–389

    Article  Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54(7):811–829

    Article  Google Scholar 

  • Jin F-F, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Lett 34(3):L03807

    Article  Google Scholar 

  • Kindle JC, Phoebus PA (1995) The ocean response to operational westerly wind bursts during the 1991–1992 el nino. J Geophys Res Oceans (1978–2012) 100(C3):4893–4920

    Article  Google Scholar 

  • Kleeman R, Moore AM (1999) A new method for determining the reliability of dynamical enso predictions. Mon Weather Rev 127(5):694–705

    Article  Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty V, McPhaden M (2012) Tropflux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543

    Article  Google Scholar 

  • Kumar BP, Vialard J, Lengaigne M, Murty V, McPhaden M, Cronin M, Pinsard F, Reddy KG (2013) Tropflux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40(7–8):2049–2071

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Masson S, Madec G, Delecluse P (2002) Ocean response to the March 1997 westerly wind event. J Geophys Res 107(C12):8015

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo JM (2003a) The March 1997 westerly wind event and the onset of the 1997/98 El Niño: understanding the role of the atmospheric response. J Clim 16(20):3330–3343

  • Lengaigne M, Madec G, Menkes C, Alory G (2003b) Impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108(C11):3345. doi:10.1029/2002JC001704

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Delecluse P, Slingo J (2004a) Westerly wind events in the Tropical Pacific and their influence on the coupled ocean–atmosphere system: a review. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, DC. doi:10.1029/147GM03

  • Lengaigne M, Guilyardi E, Boulanger J-P, Menkes C, Delecluse P, Inness P, Cole J, Slingo JM (2004b) Triggering of El Niño by westerly wind events in a coupled general circulation model. Clim Dyn 23(6):601–620

  • Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516

    Article  Google Scholar 

  • Lian T, Chen D, Tang Y, Wu Q (2014) Effects of westerly wind bursts on El Niño: a new perspective. Geophys Res Lett 41:3522–3527. doi:10.1002/2014GL059989

    Article  Google Scholar 

  • Lucas LE, Waliser DE, Murtugudde R (2010) Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation. J Geophys Res 115:C05012. doi:10.1029/2009JC005450

    Article  Google Scholar 

  • Luther D, Harrison D (1984) Observing long-period fluctuations of surface winds in the tropical pacific : Initial results from island data. Mon Weather Rev 112(2):285–302

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950–954

    Article  Google Scholar 

  • McPhaden MJ (2002) Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J Clim 15:2632–2647

    Article  Google Scholar 

  • McPhaden MJ (2015) Playing hide and seek with El Niño. Nat Clim Change 5:791–795. doi:10.1038/nclimate2775

    Article  Google Scholar 

  • McPhaden MJ, Taft BA (1988) Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J Phys Oceanogr 18(11):1713–1732

    Article  Google Scholar 

  • McPhaden MJ, Bahr F, Du Penhoat Y, Firing E, Hayes SP, Niiler PP, Richardson PL, Toole JM (1992) The response of the western equatorial pacific ocean to westerly wind bursts during november 1989 to january 1990. J Geophys Res Oceans 97(C9):14289–14303

    Article  Google Scholar 

  • McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33(16):L16702

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13(20):3551–3559

    Article  Google Scholar 

  • Menkes CE, Vialard JG, Kennan SC, Boulanger J-P, Madec GV (2006) A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial pacific. J Phys Oceanogr 36(5):847–865

    Article  Google Scholar 

  • Menkes C, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014). About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett

  • Mosquera-Vásquez K, Dewitte B, Illig S (2014) The central pacific el niño intraseasonal kelvin wave. J Geophys Res Oceans 119(10):6605–6621

    Article  Google Scholar 

  • Palmer TN, Mansfield DA (1984) Response of two atmospheric general circulation models to sea surface temperature anomalies in the tropical East and West Pacific. Nature 310:483–485

    Article  Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7(6):952–956

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño‐Southern Oscillation and biogeochemical phenomena. J Geophys Res Oceans 106(C2):2363–2386

    Article  Google Scholar 

  • Picaut J, Hackert E, Busalacchi AJ, Murtugudde R, Lagerloef GS (2002) Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations. J Geophys Res Oceans (1978–2012) 107(C5), 1–5

    Google Scholar 

  • Puy M, Vialard J, Lengaigne M, Guilyardi E (2016) Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Clim Dyn 46:2155. doi:10.1007/s00382-015-2695-x

    Article  Google Scholar 

  • Qiao L, Weisberg RH (1995) Tropical instability wave kinematics: observations from the tropical instability wave experiment. J Geophys Res Oceans (1978–2012) 100(C5):8677–8693

    Article  Google Scholar 

  • Richardson RA, Ginis I, Rothstein LM (1999) A numerical investigation of the local ocean response to westerly wind burst forcing in the western equatorial pacific. J Phys Oceanogr 29(6):1334–1352

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res Oceans (1978–2012) 105(C10):23927–23942

    Article  Google Scholar 

  • Schopf PS, Harrison DE (1983) On equatorial waves and El Niño. I. Influence of initial states on wave-induced currents and warming. J Phys Oceanogr 13(6):936–948

    Article  Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45(3):549–566

    Article  Google Scholar 

  • Shi L, Alves O, Hendon H (2009) The role of stochastic forcing in ensemble forecasts of the 1997/98 El Nino. J Clim 22(10):2526–2540

    Article  Google Scholar 

  • Shinoda T, Hendon HH, Glick J (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western pacific and indian oceans. J Clim 11(7):1685–1702

    Article  Google Scholar 

  • Shinoda T, Roundy PE, Kiladis GN (2008) Variability of intraseasonal kelvin waves in the equatorial pacific ocean. J Phys Oceanogr 38(5):921–944

    Article  Google Scholar 

  • Smyth WD, Hebert D, Moum JN (1996) Local ocean response to a multiphase westerly wind burst: 2. Thermal and freshwater responses. J Geophys Res 101(C10):22513

    Article  Google Scholar 

  • Suzuki T, Takeuchi K (2000) Response of equatorial pacific mean temperature field to intraseasonal wind forcing. J Oceanogr 56(5):485–494

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau KM, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291

    Article  Google Scholar 

  • Uppala SM, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The era-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Vecchi G, Harrison D (2000) Tropical pacific sea surface temperature anomalies, el nino, and equatorial westerly wind events. J Clim 13(11):1814–1830

    Article  Google Scholar 

  • Vecchi G, Wittenberg AT (2010) El Niño and our future climate: where do we stand ? Wiley Interdisciplinary Reviews. Clim Change 1(2):260–270

    Google Scholar 

  • Vecchi G, Wittenberg AT, Rosati A (2006) Reassessing the role of stochastic forcing in the 1997–1998 el niño. Geophys Res Lett 33(1):L01706

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial pacific sea surface temperature during the 1997–98 el niño. J Phys Oceanogr 31(7):1649–1675

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A, Xue Y (2011) How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys Res Lett 38:L13705. doi:10.1029/2011GL047684

    Article  Google Scholar 

  • Weidman P, Mickler DL, Dayyani B, Born G (1999) Analysis of legeckis eddies in the near-equatorial pacific. J Geophys Res Oceans (1978–2012) 104(C4):7865–7887

    Article  Google Scholar 

  • Zavala-Garay J, Zhang C, Moore AM, Kleeman R (2005) The linear response of ENSO to the Madden–Julian oscillation. J Clim 18(13):2441–2459

    Article  Google Scholar 

  • Zelle H, Appeldoorn G, Burgers G, van Oldenborgh GJ (2004) The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J Phys Oceanogr 34(3):643–655

    Article  Google Scholar 

  • Zhang C (2001) Intraseasonal perturbations in sea surface temperatures of the equatorial eastern pacific and their association with the madden-julian oscillation. J Clim 14(6):1309–1322

    Article  Google Scholar 

  • Zhang C, McPhaden MJ (2000) Intraseasonal surface cooling in the equatorial western pacific. J Clim 13(13):2261–2276

    Article  Google Scholar 

  • Zhang KQ, Rothstein LM (1998) Modelling the oceanic response to westerly wind bursts in the western equatorial pacific. J Phys Oceanogr 28(11):2227–2249

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Agence Nationale de la Recherche (ANR) projects METRO, Grant No. 2010-BLAN-616-01, MORDICUS, Grant No. ANR-13-SENV-0002, and the Belmont project GOTHAM, Grant No. ANR-15-JCLI-0004-01, as well as the SPECS project funded by the European Commission’s Seventh Framework Research Programme under the Grant agreement 308378. We gratefully acknowledge Christophe Cassou, Marie-Pierre Moine, Laure Coquart and Stéphane Sénési for discussions and help with the model. Computations were carried out at the CNRS supercomputing centre (IDRIS). This work was done while Matthieu Lengaigne was a visiting scientist at the National Institute of Oceanography (Goa, India), thanks to Institut de Recherche pour le Développement (IRD) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Puy.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puy, M., Vialard, J., Lengaigne, M. et al. Modulation of equatorial Pacific sea surface temperature response to westerly wind events by the oceanic background state. Clim Dyn 52, 7267–7291 (2019). https://doi.org/10.1007/s00382-016-3480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3480-1

Keywords

Navigation