Skip to main content

Advertisement

Log in

Improvements in precipitation simulation over South America for past and future climates via multi-model combination

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Combining individual forecasts is one of the practices used to improve weather prediction results. Identifying which combination of techniques results in a more accurate forecast is the subject of many comparative studies as well proposals for combined methods. Here we compare three combination techniques: (1) principal component regression (PCR), (2) convex combination by mean squared errors (MSE) and (3) ensemble average to combine six regional climate models of the Regional Climate Change Assessment for the La Plata Basin Project (CLARIS-LPB) for variable rainfall in three regions: Amazon (AMZ), Northeastern Brazil (NEB) and La Plata Basin (LPB), for the past (1961–1990) and future (2071–2100) climates. The results indicate that the average RMSE values showed improved representation of climate for LPB in some months, which is an important advance in climate studies. On the other hand, PCR presented greater accuracy (lower RMSE) than MSE in the AMZ and NEB regions. In winter months, both combinations presented lower RMSE results, mainly PCR in the three study regions. The correlation coefficient supports the results already found, namely, PCR obtained moderate to strong correlations, which were statistically significant at 5 % in both regions for all months, while MSE presented low to moderate correlations, which were statically significant at 5 % only in some months. Based on that, PCR achieved the best corrected forecast, as it was superior in forecasting precipitation due to the lower RMSE value. It is noteworthy that the PCR data were first subjected to principal component analysis (PCA) and the scores were used to perform the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Chakraborty A, Krishnamurti TN, Gnanaseelan C (2007) Prediction of the diurnal cycle using a multimodel superensemble. Part II: Clouds. Mon Weather Rev 135:4097–4116

    Article  Google Scholar 

  • Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2-3):179–194

    Article  Google Scholar 

  • Chou SC, Lan C-W (2012) Changes in the annual range of precipitation under global warming. J Clim 25(1):222–235

    Article  Google Scholar 

  • Coppola E, Giorgi F, Raffaele F, Fuentes-Franco R, Giuliani G, LLopart-Pereira M, Torma C (2014) Present and future climatologies in the phase I CREMA experiment. Clim Change 125(1):23–38

    Article  Google Scholar 

  • Coutinho MM (1999) Previsão por conjuntos utilizando perturbações baseadas em componentes principais. São José dos Campos. Dissertação (Mestrado em Meteorologia) - Instituto Nacional de Pesquisas Espaciais, p 136

  • Coutinho EDC, Fisch G (2007) Distúrbios ondulatórios de leste (DOLs) na região do Centro de Lançamento de Alcântara-MA. Revis Bras de Meteorol 22(2):193–203

    Article  Google Scholar 

  • Coutinho MDL, Lima KC, Silva CMS (2016) Regional climate simulations of the changes in the components of the moisture budget over South America. Int J Climatol 36(3):1170–1183

  • Domínguez M, Gaertner MA, De Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35(1):249–265

    Article  Google Scholar 

  • Da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations. J Geophys Res: Atmos. doi:10.1029/2008JD010212

    Google Scholar 

  • Da Rocha RP, Cuadra SV, Reboita MS, Krüger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52:253–265

    Article  Google Scholar 

  • Da Silva AG, Silva CMS (2014) Improving regional dynamic downscaling with multiple kinear regression model using components principal analysis: precipitation over Amazon and Northeast Brazil. Adv Meteorol 2014

  • Ferraz SET, Pedroso D (2013) Sensitivity of REGCM3 simulated precipitation over southern Brazil with different boundary conditions: ENSO case. Adv Meteorol 2013

  • Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-tointerannual climate predictions. Int J Climatol 21:1111–1152

    Article  Google Scholar 

  • Hopkins WG (2009) Correlation coefficient. Disponível em: http://www.sportsci.org/resource/stats/correl.html. Acesso em: 20 fev. 2014

  • Jeong DI, Kim Y (2009) Combining single-value streamflow forecasts—a review and guidelines for selecting techniques. J Hydrol 377(3):284–299

    Article  Google Scholar 

  • Kendall MG (1957) A course in multivariate analysis. Griffin, London

    Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Larow TE, Bachiochi DR, Zhang Z (1999) Improved weather and seasonal climate forecasts from multi-model superensemble. Science 285(5433):1548–1550

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow T, Bachiochi DR, Williford E, Gadgil S, Surendran S (2000a) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216. doi:10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow TE, Bachiochi DR, Williford CE, Gadgil S, Surendran S (2000b) Improving tropical precipitation forecasts from a multianalysis superensemble. J Clim 13:4217–4227

    Article  Google Scholar 

  • Krishnamurti TN, Sanjay J, Mitra AK, Vijaya Kumar TSV (2004) Determination of forecast errors arising from different components of model physics and dynamics. Mon Weather Rev 132(11):2570–2594

    Article  Google Scholar 

  • Krishnamurti TN, Mishra AK, Chakraborty A, Rajeevan M (2009) Improving global model precipitation forecasts over India using downscaling and the FSU superensemble, Part I: 1–5-Day forecasts. Mon Weather Rev 137:2713–2735

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17(12):1244–1245

    Article  Google Scholar 

  • Lee JA, Kolczynski WC, Mccandless TC, Haupt SE (2012) An objective methodology for configuring and down-selecting an nwp ensemble for low-level wind prediction. Mon Weather Rev 140(7):2270–2286

    Article  Google Scholar 

  • Lenartz F, Mourre B, Barth A, Beckers J-M, Vandenbulcke L, Rixen M (2010) Enhanced ocean temperature forecast skills through 3-D super-ensemble multi-model fusion. Geophys Res Lett 37(19). doi:10.1029/2010GL044591

  • Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO (2004) Mid-century ensemble regional climate change scenarios for the western United States. Clim Change 62(1–3):75–113

    Article  Google Scholar 

  • Li L, Conil S (2003) Transient response to an atmospheric GCM to North Atlantic SST anomalies. J Clim 16:3993–3998

    Article  Google Scholar 

  • Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. In: Seminar proceedings ECMWF, vol 2. pp 147–191

    Google Scholar 

  • Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Ferraz SET, Torres RR, Santos DC (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35(6):1073–1097

    Article  Google Scholar 

  • Martens H (1992) Multivariate calibration. Wiley, New York

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Zhao ZC (2007) Global climate projections. Clim Change 3495:747–845

  • Menéndez CG, De Castro M, Boulanger JP, D’Onofrio A, Sanchez E, Sörensson AA, Teichmann C (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98(3–4):379–403

    Article  Google Scholar 

  • Misra V (2006) Understanding the predictability of seasonal precipitation over northeast Brazil. Tellus 58a:307–319

    Article  Google Scholar 

  • Mota GV (1997) Estudo observacional de distúrbios ondulatórios de leste no nordeste brasileiro. São Paulo. 92 p. Dissertação (Mestrado em Meteorologia) – Instituto Astronômico e Geofísico–USP

  • Moura AD, Shukla J (1981) On the dynamics of droughts in northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38(7):2653–2675

    Article  Google Scholar 

  • Mullen S, Buizza R (2001) Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon Weather Rev 129(4):638–663

    Article  Google Scholar 

  • Paiva EJ, Paiva AP, Ferreira JR, Balestrassi PP (2008) Otimização de múltiplas respostas baseada no Erro Quadrático Médio Multivariado. In: XXVIII Encontro Nacional de Engenharia de Produção. Rio de Janeiro

  • Pal et al (2007) Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta Model. Theoret Appl Climatol 99(1–2):75–93

    Article  Google Scholar 

  • Phillips DL, Dolph J, Marks D (1992) A comparison of geostatistical procedures for spatial analysis of precipitations in mountainous terrain. Agric For Meteorol 58(1):119–141

    Article  Google Scholar 

  • Richardson DS (2001) Measures of skill and value of ensemble prediction systems, theirinter relationship and the effect of ensemble size. Q J R Meteorol Soc 127:2473–2489. doi:10.1002/qj.49712757715

    Article  Google Scholar 

  • Robertson AW, Lall U, Zebiak SE, Goddard L (2004) Improved combination of multiple atmospheric GCM ensembles for seasonal predition. Mon Weather Rev 132(12):2732–2744

    Article  Google Scholar 

  • Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44(3):683–700

    Article  Google Scholar 

  • Rozante JR, Moreira DR, Godoy RCM, Fernandes AA (2014) Multi-model ensemble: technique and validation. Geosci Model Dev Discuss 7(3):2933–2959

    Article  Google Scholar 

  • Sadourny R, Le Van P, Hourdin F (1995) Discrétisation des equations de la dynamique dans le modèle LMDZ. Internal report, Laboratoire de Météorologie Dynamique du CNRS, Paris, p 4

    Google Scholar 

  • Salathé EP, Steed R, Mass CF, Zahn P (2008) A high-resolution climate model for the U.S. Pacific Northwest: mesoscale feedbacks and local responses to climate change. J Clim 21(21):5708–5726

    Article  Google Scholar 

  • Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ Res 15(2):113–129

    Google Scholar 

  • Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus 63(1):4–23

    Article  Google Scholar 

  • Sancevero SS, Remacre AZ, Vidal AC, Portugal RS (2008) Aplicação de técnicas de estatística multivariada na definição da litologia a partir de perfis geofísicos de poços. Revis Bras Geosci 38(1):61–74

    Google Scholar 

  • Sánchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, De Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim dyn 29(2–3):319–332

    Article  Google Scholar 

  • Sánchez E, Solman S, Remedio ARC, Berbery H, Samuelsson P, Da Rocha RP, Jacob D (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Clim Dyn 45(7–8):2193–2212

  • Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, pp 1–12

  • Solman SA, Sánchez E, Samuelsson P, Da Rocha RP, Li L, Marengo J, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG (2011) Summer soil-precipitation coupling in South America. Tellus 63(1):56–68

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner GK, Tignor M, Midgley P (2010) Meeting report of the IPCC expert meeting on assessing and combining multi model climate projections. IPCC Working Group I Technical Support Unit, Berlin

  • Sun L, Li H, Zebiak SE, Moncunill DF, Filho FD, Moura AD (2006) An operational dynamical downscaling prediction system for Nordeste Brazil and the 2002–04 real-time forecast evaluation. J Clim 19(10):1990–2007

    Article  Google Scholar 

  • Tebaldi C, Smith RW, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a bayesian approach to the analysis of multimodel ensembles. J Clim 18(10):1524–1540

    Article  Google Scholar 

  • Van Lier Walqui M, Vukicevic T, Posselt DJ (2012) Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon Weather Rev 140(11):3442–3466

    Article  Google Scholar 

  • Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63(11):1309–1313

    Article  Google Scholar 

  • Zhu H, Thorpe A (2006) The predictability of extra-tropical cyclones: the influence of the initial condition and model uncertainties. J Atmos Sci 63(5):1483–1497

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the CLARIS-LPB project for providing the outputs of the models and also the Office to Improve University Personnel (CAPES) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytê Duarte Leal Coutinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, M.D.L., Lima, K.C. & Santos e Silva, C.M. Improvements in precipitation simulation over South America for past and future climates via multi-model combination. Clim Dyn 49, 343–361 (2017). https://doi.org/10.1007/s00382-016-3346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3346-6

Keywords

Navigation